09:00 - 09:50 |
Benjamin Rossman: Criticality and decision-tree size of regular AC^0 functions ↓ A boolean function F : {0,1}^n -> {0,1} is said to be “k-critical” if it satisfies
Pr[ F|R_p has decision-tree depth >= t ] <= (pk)^t
for all p and t, where R_p : {x_1,…,x_n} -> {0,1,*} is the p-random restriction. For example, Hastad’s Switching Lemma (1986) states that every k-CNF formula is O(k)-critical. I will discuss an alternative switching lemma (using an entropy argument) which shows that size-s CNF formulas are O(log s)-critical. A recent extension of this argument establishes a tight bound of O((log s)/d)^d on the criticality of regular AC^0 formulas of depth d+1, where “regular” means that gates at the same height have equal fan-in. This strengthens several recent results for AC^0 circuits on their decision-tree size, Fourier spectrum, and the complexity of #SAT. (Paper to appear in CCC 2019.) (TCPL 201) |
09:55 - 10:45 |
Neeraj Kayal: Reconstructing arithmetic formulas using lower bound proof techniques ↓ What is the smallest formula computing a given multivariate polynomial f(x)=
? In this talk I will present a paradigm for translating the known lower
bound proofs for various subclasses of formulas into efficient proper learn=
ing algorithms for the same subclass.
Many lower bounds proofs for various subclasses of arithmetic formulas redu=
ce the problem to showing that any expression for f(x) as a sum of =93simpl=
e=94 polynomials T_i(x):
f(x) =3D T_1(x) + T_2(x) + =85 + T_s(x),
the number s of simple summands is large. For example, each simple summand =
T_i could be a product of linear forms or a power of a low degree polynomia=
l and so on.
The lower bound consists of constructing a vector space of linear maps M, e=
ach L in M being a linear map from the set of polynomials F[x] to some vect=
or space W
(typically W is F[X] itself) with the following two properties:
(i) For every simple polynomial T, dim(M*T) is small, say =
that dim(M*T) <=3D r.
(ii) For the candidate hard polynomial f, dim(M*f) is large,=
say that dim(M*f) >=3D R.
These two properties immediately imply a lower bound: s >=3D R/r.
The corresponding reconstruction/proper learning problem is the following: =
given f(x) we want to find the simple summands T_1(x), T_2(x), =85, T_s(x) =
which add up to f(x).
We will see how such a lower bound proof can often be used to solve the rec=
onstruction problem. Our main tool will be an efficient algorithmic solutio=
n
to the problem of decomposing a pair of vector spaces (U, V) under the simu=
ltaneous action of a vector space of linear maps from U to V.
Along the way we will also obtain very precise bounds on the size of formul=
as computing certain explicit polynomials. For example, we will obtain for =
every s, an explicit
polynomial f(x) that can be computed by a depth three formula of size s but=
not by any depth three formula of size (s-1).
Based on joint works with Chandan Saha and Ankit Garg. (TCPL 201) |
11:00 - 11:50 |
Joshua Grochow: Tensor Isomorphism: completeness, graph-theoretic methods, and consequences for Group Isomorphism ↓ We consider the problems of testing isomorphism of tensors, p-groups, cubic forms, algebras, and more, which arise from a variety of areas, including machine learning, group theory, and cryptography. Despite a perhaps seeming similarity with Graph Isomorphism, the current-best algorithms for these problems (when given by bases) are still exponential - for most of them, even q^{n^2} over GF(q). Similarly, while efficient practical software exists for Graph Isomorphism, for these problems even the best current software can only handle very small instances (e.g., 10 x 10 x 10 over GF(13)). This raises the question of finding new algorithmic techniques for these problems, and/or of proving hardness results.
We show that all of these problems are equivalent under polynomial-time reductions, giving rise to a class of problems we call Tensor Isomorphism-complete (TI-complete). We further show that testing isomorphism of d-tensors for any fixed d (at least 3) is equivalent to testing isomorphism of 3-tensors. Using the same techniques, we show two first-of-their-kind results for Group Isomorphism (GpI): (a) a reduction from isomorphism of p-groups of exponent p and class c < p, to isomorphism of p-groups of exponent p and class 2, and (b) a search-to-decision reduction for the latter class of groups in time |G|^{O(log log|G|)}. We note that while p-groups of class 2 have long been believed to be the hardest cases of GpI, as far as we are aware this is the first reduction from any larger class to this class of groups. Finally, we discuss a way to apply combinatorial methods from Graph Isomorphism (namely, Weisfeiler-Leman) to Group and Tensor Isomorphism.
Based on joint works with Vyacheslav V. Futorny and Vladimir V. Sergeichuk (Lin. Alg. Appl., 2019; arXiv:1810.09219), with Peter A. Brooksbank, Yinan Li, Youming Qiao, and James B. Wilson (arXiv:1905.02518), and with Youming Qiao (arXiv:190X.XXXXX). (TCPL 201) |