Tuesday, May 24 |
07:30 - 09:00 |
Breakfast (Restaurant at your assigned hotel) |
09:15 - 10:00 |
Johannes Muhle-Karbe: Equilibrium models with small frictions ↓ How does the introduction of a small trading friction such as a transaction tax affect financial markets? To answer questions of this kind, one needs to consider equilibrium models, where prices are determined endogenously. Indeed, taxes change agents' individual decision making, which in turn affects the market prices determined by their interactions. The new market environment then again alters the agents' behavior, leading to a notoriously intractable fixed point problem. In this talk we report on recent progress using asymptotic techniques for small trading frictions. In this practically relevant limiting regime, explicit solutions become available for the arising singular control problems, bringing analytical results for the equilibrium problem within reach. We also discuss how this allows to endogenize the trading friction, and study the arising link between liquidity and fundamental volatility. (Joint work with Martin Herdegen) (Conference Room San Felipe) |
10:00 - 10:30 |
Jan Kallsen: On portfolio optimization under small fixed transaction costs ↓ While optimal investment under proportional transaction costs is quite well understood by now, less has been done in the presence of fixed fees for any single transaction. In this talk we consider the asymptotics of the no-trade region for small fixed costs. More specifically, we sketch the rigorous verification for a general univariate Ito process market under exponential utility. (Conference Room San Felipe) |
10:30 - 11:00 |
Coffee Break (Conference Room San Felipe) |
11:00 - 11:30 |
Scott Robertson: Endogenous mortgage current coupons ↓ We consider the problem of identifying endogenous current coupons for To-Be-Announced (TBA) agency mortgage pass through securities. Current coupons play a crucial role in the mortgage industry for pricing and determining the relative value of mortgage backed securities. The current coupon is said to be endogenous if it gives rise to a fairly, or par valued, TBA. Since prepayments both affect the value of the mortgage and depend heavily upon the coupon, the identification of current coupons involves solving a highly non-trivial fixed point problem. In a doubly stochastic reduced form model which allows for prepayment intensities to depend upon both current and origination mortgage rates, as well as underlying investment factors, we identify the current coupon with solutions to a degenerate elliptic, non-linear fixed point problem. Using Schaefer's theorem we prove existence of current coupons. We also provide an explicit approximation to the fixed point, valid for compact perturbations off a baseline factor-based intensity model. Numerical examples are provided which show the approximation performs well in estimating the current coupon. (Conference Room San Felipe) |
11:30 - 12:00 |
Daniel Lacker: Convex risk measures and non-exponential large deviations ↓ The convex duality between relative entropy and the entropic risk measure (a.k.a. cumulant generating functional) underlies several arguments in large deviations (especially the weak convergence approach of Dupuis and Ellis) and concentration inequalities (particularly their formulations in terms of transportation inequalities). In fact, essentially only the basic convex duality relations and the chain rule for relative entropy are needed to derive Sanov's theorem as well as various tensorization properties of concentration inequalities. We use the rich duality theory for convex risk measures along with a suitable substitute for the chain rule to derive a vast generalization of Sanov's theorem in which the entropic risk measure appearing in the Laplace principle is replaced by an arbitrary convex risk measure. Some of the many applications include non-exponential large deviations for i.i.d. samples, uniform large deviation principles, and asymptotics for constrained superhedging problems and variational problems involving optimal transport costs. (Conference Room San Felipe) |
12:00 - 12:30 |
Michael Kupper: Robust exponential hedging in discrete time ↓ We focus on the robust exponential utility maximization problem with random endowment in discrete time. An investor is allowed to invest dynamically in the market and maximizes his/her worst case expected exponential utility of the endowment plus terminal wealth with respect to a family of non-dominated probabilistic models. Under two assumptions regarding the tightness of this family and the existence of certain martingale measures we provide the existence of an optimal trading strategy defined simultaneously under all models. Further, we characterize the dual problem and provide duality for measurable endowments. (The talk is based on joint work with Daniel Bartl and Patrick Cheridito.) (Conference Room San Felipe) |
12:30 - 13:15 |
Rama Cont: Functional calculus and pathwise integration for paths of finite quadratic variation ↓ We construct a pathwise integral, defined as the limit of non-anticipative Riemann sums, with respect to paths of finite quadratic variation, for a class of path-dependent integrands which includes all 'delta-hedging' strategies. We show that this pathwise integrals enjoys an isometry property, which may be viewed as a pathwise analog of the well-known Ito isometry for stochastic integrals. This property is then used to represent the integral as a continuous map on an appropriately defined vector space of integrands and obtain a pathwise 'signal plus noise' decomposition for functionals of irregular paths with non-vanishing quadratic variation. The proofs are based on the Functional Ito calculus. Relations with rough path integration are discussed. These results provide a framework for pathwise construction and analysis of gain processes for continuous-time hedging strategies for path-dependent derivatives. (Joint work with Anna ANANOVA, Imperial College) (Conference Room San Felipe) |
13:30 - 15:00 |
Lunch (Restaurant Hotel Hacienda Los Laureles) |
15:15 - 16:00 |
Mathieu Rosenbaum: Rough Volatility - from microstructural foundations to smile ↓ It has been recently shown that rough volatility models reproduce very well the statistical properties of low frequency financial data. In such models, the volatility process is driven by a fractional Brownian motion with Hurst parameter of order 0.1. Furthermore, it is very well-known that volatility and price movements are correlated, through the so-called leverage effect phenomenon. The goal of this talk is first to explain how fractional dynamics and leverage effect can be obtained from the behaviour of market participants at the microstructural scales. Using Hawkes processes, we show that these features naturally arise in the presence of high frequency trading under no arbitrage condition. Then we will demonstrate that such result enables us to derive an efficient method to compute the smile in rough volatility models. (This is joint work with Omar El Euch, Masaaki Fukasawa, Jim Gatheral and Thibault Jaisson.) (Conference Room San Felipe) |
16:00 - 16:30 |
Coffee Break (Conference Room San Felipe) |
16:30 - 17:00 |
Christian Bayer: Pricing under rough volatility ↓ From an analysis of the time series of realized variance (RV) using recent high frequency data, Gatheral, Jaisson and Rosenbaum (2014) previously showed that log-RV behaves essentially as a fractional Brownian motion with Hurst exponent H of order 0.1, at any reasonable time scale. The resulting Rough Fractional Stochastic Volatility (RFSV) model is remarkably consistent with financial time series data. We now show how the RFSV model can be used to price claims on both the underlying and integrated variance. We analyze in detail a simple case of this model, the rBergomi model. In particular, we find that the rBergomi model fits the SPX volatility markedly better than conventional Markovian stochastic volatility models, and with fewer parameters. Finally, we show that actual SPX variance swap curves seem to be consistent with model forecasts, with particular dramatic examples from the weekend of the collapse of Lehman Brothers and the Flash Crash. (Conference Room San Felipe) |
17:00 - 17:30 |
Christoph Czichowsky: The log-optimal portfolio and fractional Brownian motion ↓ While absence of arbitrage in frictionless financial markets (i.e. without transaction costs) requires price processes to be semimartingales, non-semimartingales can be used to model prices in an arbitrage-free way, if proportional transaction costs are taken into account. In this talk, we show how to obtain the existence of the log-optimal portfolio under proportional transaction costs in the fractional Black-Scholes model by establishing a so-called shadow price. This is a semimartingale price process, taking values in the bid ask spread, such that frictionless trading for that price process leads to the same optimal strategy and utility as the original problem under transaction costs. The relation to frictionless financial markets can then be used to describe the behaviour of the optimal trading strategy under transaction costs. (Conference Room San Felipe) |
19:00 - 21:00 |
Dinner (Restaurant Hotel Hacienda Los Laureles) |