Many-user multiple access with coding and random user activity

Ramji Venkataramanan

University of Cambridge

Kuan Hsieh

Cynthia Rush

Xiaoqi (Shirley) Liu

Pablo Pascual Cobo

Gaussian multiple-access channel (GMAC)

Modern networks often have

- Very large number of users
- Small data payload for each user

Many-user setting

- User density $\mu = L/n$
- Fixed user payload log M bits/user
- Energy-per-bit constraint $\|\boldsymbol{c}_i\|^2 \leq E := E_b \log M, \ i \in [L]$
- ▶ Per-user probability of error (PUPE) $\frac{1}{L}\sum_{i} \mathbb{P}(\hat{\mathbf{x}}_{i} \neq \mathbf{x}_{i})$

[Chen, Chen, Guo, '17], [Ravi, Koch '19] [Polyanskiy '17], [Zadik, Polyanskiy, Thrampoulidis '19], [Polyanskiy, Kowshik '20]

Many-user setting

- User density $\mu = L/n$
- Fixed user payload log M bits/user
- Energy-per-bit constraint $\|\boldsymbol{c}_i\|^2 \leq E := E_b \log M, \ i \in [L]$
- ▶ Per-user probability of error (PUPE) $\frac{1}{L}\sum_{i} \mathbb{P}(\hat{\mathbf{x}}_{i} \neq \mathbf{x}_{i})$

Linear scaling regime

 $L, n \rightarrow \infty$ with $\mu = L/n$ fixed, E_b and M do not scale with nWhat is minimum E_b/N_0 required for a given μ and target PUPE, e.g. 10^{-3} ?

[Chen, Chen, Guo, '17], [Ravi, Koch '19] [Polyanskiy '17], [Zadik, Polyanskiy, Thrampoulidis '19], [Polyanskiy, Kowshik '20]

GMAC with random user activity

- Only a fraction of users active, decoder may not know the exact number
- Errors: Misdetections, False Alarms, Active-user Errors
- ► Tradeoff between E_b/N_0 and user density μ for given target error rates

[Ngo et al. '22], [Fengler et al. '20], ...

Different from unsourced random access

[Polyanskiy '17], [Fengler et al. '21], [Amalladine et al. '20], [Polyanskiy, Kowshik '20], [Ngo et al. '22], ...

Here each user has separate codebook

Previous work

What can be achieved with random Gaussian codebooks and (infeasible) maximum-likelihood decoding?

[Polyanskiy '17], [Zadik, Polyanskiy, Thrampoulidis '19], [Polyanskiy, Kowshik '20]

Previous work

What can be achieved with random Gaussian codebooks and (infeasible) maximum-likelihood decoding?

[Polyanskiy '17], [Zadik, Polyanskiy, Thrampoulidis '19], [Polyanskiy, Kowshik '20]

This talk

- What can be achieved with efficient coding schemes?
 - SPARC-based and coded CDMA schemes with spatial coupling
 - Approximate Message Passing (AMP) decoding
- GMAC with random user activity
 - Achievability bounds and efficient schemes

Many-user setting

• User density $\mu = L/n$

- ► Fixed user payload log *M* bits/user
- Energy-per-bit constraint $\|\boldsymbol{c}_i\|^2 \leq E := E_b \log M, \ i \in [L]$
- ▶ Per-user probability of error (PUPE) $\frac{1}{L}\sum_{i} \mathbb{P}(\hat{\mathbf{x}}_{i} \neq \mathbf{x}_{i})$

Linear scaling regime

 $L, n \rightarrow \infty$ with $\mu = L/n$ fixed, E_b and M do not scale with nWhat is minimum E_b/N_0 required for a given μ and target PUPE, e.g. 10^{-3} ?

Bounds

User payload = 8 bits

For each E_b/N_0 value, find max. μ that achieves PUPE $\leq 10^{-3}$

[Zadik, Polyanskiy, Thrampoulidis '19], [Polyanskiy, Kowshik ('20] (=) = ∽ (

Random linear coding

For each user *i*, codeword $c_i = A_i x_i$

▶ Random matrices: $A_i \in \mathbb{R}^{n \times B}$

• User *i*'s message encoded in $\mathbf{x}_i \in \mathbb{R}^B \sim P_{\mathbf{X}}$

$$\mathbf{y} = \sum_{i} \mathbf{A}_{i} \mathbf{x}_{i} + \mathbf{w} = \mathbf{A} \mathbf{x} + \mathbf{w}$$

10 / 32

Examples with IID Gaussian A

Random codebooks: B = M, each x_i has a single nonzero entry = √E

Examples with IID Gaussian A

- Random codebooks: B = M, each x_i has a single nonzero entry $= \sqrt{E}$
- ▶ Random codebooks with binary modulation: B = M/2 and each x_i has a single nonzero entry $\in \{\sqrt{E}, -\sqrt{E}\}$
- Random CDMA: B = 1, each x_i drawn from M-ary constellation

Examples with IID Gaussian A

- Random codebooks: B = M, each x_i has a single nonzero entry $= \sqrt{E}$
- ▶ Random codebooks with binary modulation: B = M/2 and each x_i has a single nonzero entry $\in \{\sqrt{E}, -\sqrt{E}\}$
- Random CDMA: B = 1, each x_i drawn from M-ary constellation

We will also use spatially coupled A

Spatially coupled matrix

Combined codebook matrix \boldsymbol{A}

Gaussian entries on band-diagonal, remaining entries zero

IID Gaussian matrix

 $A_{jk} \sim_{iid} N(0, 1/n), \qquad \mathbf{x}_i \sim_{iid} P_{\mathbf{X}}$

Decoding task: Recover x_1, \ldots, x_L from $y = \sum_i A_i x_i + w = Ax + w$

・ロ・・西・・ヨ・・ヨ・ うへの

13/32

Approximate Message Passing decoder

AMP decoder tailored to prior on $\mathbf{x} = [\mathbf{x}_1, \dots, \mathbf{x}_L]$ Iteratively produces estimates $\hat{\mathbf{x}}^1, \hat{\mathbf{x}}^2, \dots$

Can precisely characterize asymptotic error rate as $n, L \rightarrow \infty$:

$$\lim_{t\to\infty}\lim_{n\to\infty}\frac{1}{L}\sum_{\ell=1}^{L}\mathbb{1}\{\hat{\boldsymbol{x}}_{\ell}^{t}\neq\boldsymbol{x}_{\ell}\}$$

(Limit taken with user density $L/n = \mu$ fixed)

User payload = 8 bits

For each μ , we find minimum E_b/N_0 that achieves PUPE $\leq 10^{-3}$

Theoretical curve is derived from a single-user effective channel

Single-user channel

$$oldsymbol{S}_{ au} = oldsymbol{X} + \sqrt{ au}oldsymbol{G}, \qquad oldsymbol{X} \sim P_{oldsymbol{X}}, \,\,oldsymbol{G} \sim \mathsf{N}(oldsymbol{0},oldsymbol{I}_B)$$

MAP estimator: $\hat{\boldsymbol{x}}^{\text{MAP}}(\boldsymbol{S}_{\tau}) = \arg \max_{\boldsymbol{x}' \in \mathcal{X}} \mathbb{P}(\boldsymbol{X} = \boldsymbol{x}' \mid \boldsymbol{S}_{\tau})$

Prob. of error: $P_e(\tau) = \mathbb{P}(\hat{\pmb{x}}^{\mathrm{MAP}}(\pmb{S}_{\tau}) \neq \pmb{X})$

Example: Random Gaussian codebooks

$$\hat{oldsymbol{x}}_{j}^{\mathrm{MAP}}(oldsymbol{s}) = \left\{egin{array}{ll} \sqrt{E} & ext{if } s_{j} > s_{k} ext{ for all } k \in [B] ackslash j, \ 0 & ext{otherwise} \end{array}
ight.$$

$$P_e(\tau) = 1 - \mathbb{E}\left[\Phi(\sqrt{E/\tau} + G)^{B-1}
ight]$$

Theorem

Consider iid Gaussian **A** and message vectors $\mathbf{x}_i \sim_{iid} P_{\mathbf{X}}$. Then, the asymptotic user error rate of the AMP decoder is

$$\lim_{t \to \infty} \lim_{L \to \infty} \frac{1}{L} \sum_{\ell=1}^{L} \mathbb{1} \{ \hat{\boldsymbol{x}}_{\ell}^{t} \neq \boldsymbol{x}_{\ell} \} \stackrel{\text{a.s.}}{=} \boldsymbol{P}_{\boldsymbol{e}}(\boldsymbol{\tau}^{\text{FP}})$$

where the inner limit is taken with $L/n = \mu$.

Theorem

Consider iid Gaussian **A** and message vectors $\mathbf{x}_i \sim_{iid} P_{\mathbf{X}}$. Then, the asymptotic user error rate of the AMP decoder is

$$\lim_{t\to\infty}\lim_{L\to\infty}\frac{1}{L}\sum_{\ell=1}^{L}\mathbb{1}\left\{\hat{\boldsymbol{x}}_{\ell}^{t}\neq\boldsymbol{x}_{\ell}\right\}\stackrel{\text{a.s.}}{=}\boldsymbol{P}_{\boldsymbol{e}}(\tau^{\mathrm{FP}})$$

where the inner limit is taken with $L/n = \mu$.

 τ^{FP} is the largest stationary point of the potential function:

$$\mathcal{F}(\tau) = I(\boldsymbol{X}; \boldsymbol{S}_{\tau}) + \frac{1}{2\mu} \left[\ln \left(\frac{\tau}{N_0/2} \right) - \left(1 - \frac{N_0/2}{\tau} \right) \right]$$

where $\tau \in \left[\frac{N_0}{2}, \frac{N_0}{2} + \mu E \right].$

Can we achieve $P_e(\tau^*)$, corresponding to the global minimum?

Spatially coupled Gaussian matrix

 $\boldsymbol{x} = [\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_L]$ has same form as before: $\boldsymbol{x}_i \in \mathbb{R}^B \sim_{iid} P_{\boldsymbol{X}}$

[Kudekar, Pfister '10], [Donoho, Javanmard, Montanari '13] [Barbier and Krzakala '17] [Liang, Ma and Ping '17] [Hsieh, Rush, Va'21] (20. 12) (20. 1

Example:

L = 25 users

n = 35 channel uses

$$(\omega=3,\mathsf{C}=5)$$
 base matrix

Spatial coupling induces block-wise time-division with overlap

Theorem (Threshold Saturation)

Consider spatially coupled Gaussian **A**, message vectors $\mathbf{x}_i \sim_{iid} P_{\mathbf{X}}$. For any $\delta > 0$, sufficiently large ω and sufficiently small $\frac{\omega}{C}$ we have:

$$\lim_{t\to\infty}\lim_{L\to\infty}\frac{1}{L}\sum_{\ell=1}^L\mathbb{1}\big\{\hat{\boldsymbol{x}}_\ell^t\neq \boldsymbol{x}_\ell\big\}\leq P_e(\tau^*+\delta) \quad \text{ a. s.}$$

where the inner limit is taken with $L/n = \mu$.

Here τ^* is the **global minimum** of the potential function:

$$\mathcal{F}(\tau) = I(\mathbf{X}; \mathbf{S}_{\tau}) + \frac{1}{2\mu} \left[\ln \left(\frac{\tau}{N_0/2} \right) - \left(1 - \frac{N_0/2}{\tau} \right) \right]$$

where $\tau \in \left[\frac{N_0}{2}, \frac{N_0}{2} + \mu E \right]$.

User payload = 8 bits

For each μ , we find minimum E_b/N_0 that achieves PUPE $\leq 10^{-3}$

- Complexity of AMP decoder scales exponentially with B Multiple transmissions needed for larger payloads (~ 100 bits)
- ▶ User information may be *coded* (e.g., using LDPC outer code)

Coded Binary CDMA

$$\mathbf{A} = \begin{bmatrix} \uparrow & \dots & \dots & \uparrow \\ \mathbf{a}_1 & \dots & \dots & \mathbf{a}_L \\ \downarrow & \dots & \dots & \downarrow \end{bmatrix}, \qquad \mathbf{X} = \begin{bmatrix} \leftarrow & \mathbf{x}_1 & \rightarrow \\ & \vdots & \\ \leftarrow & \mathbf{x}_L & \rightarrow \end{bmatrix}$$

For each user *i*:

- ▶ Signature sequence $\boldsymbol{a}_i \in \mathbb{R}^{\tilde{n}}$
- Codeword \boldsymbol{x}_i is row *i* of the "signal" matrix $\boldsymbol{X} \in \{\pm \sqrt{E}\}^{L \times d}$
- Each x_i is a codeword of (k, d) linear code

$$\boldsymbol{Y} = \sum_{i=1}^{L} \boldsymbol{a}_i \boldsymbol{x}_i + \text{ noise } = \boldsymbol{A}\boldsymbol{X} + \text{ noise}$$

Number of channel uses $n = \tilde{n}d$

AMP Decoder

Starting with initializer
$$\mathbf{X}^0 = 0$$
, for $t \ge 1$
 $\mathbf{Z}^t = \mathbf{Y} - \mathbf{A}\mathbf{X}^t + \frac{1}{n}\mathbf{Z}^{t-1}\left[\sum_{\ell=1}^L \eta_{t-1}'\left(\mathbf{s}_{\ell}^{t-1}\right)\right]^{\top}$
 $\mathbf{S}^t = \mathbf{A}^{\top}\mathbf{Z}^t + \mathbf{X}^t$,
 $\mathbf{X}^{t+1} = \eta_t \left(\mathbf{S}^t\right)$

For each *t*:

Empirical distribution of rows of $(\mathbf{S}^t - \mathbf{X}) \rightarrow N(0, \Sigma^t)$ **State evolution** to iteratively compute $d \times d$ covariance Σ^t $\Rightarrow \eta^t$ estimates \mathbf{X} from observation in Gaussian noise

$$Z^{t} = Y - AX^{t} + \frac{1}{n}Z^{t-1} \left[\sum_{\ell=1}^{L} \eta_{t-1}' \left(s_{\ell}^{t-1}\right)\right]^{\top}$$
$$S^{t} = A^{\top}Z^{t} + X^{t},$$
$$X^{t+1} = \eta_{t} \left(S^{t}\right), \qquad \hat{X}^{t+1} = h_{t}(S^{t}) \text{ (hard decision)}$$

$$Z^{t} = Y - AX^{t} + \frac{1}{n}Z^{t-1} \left[\sum_{\ell=1}^{L} \eta_{t-1}' \left(s_{\ell}^{t-1}\right)\right]^{\top}$$
$$S^{t} = A^{\top}Z^{t} + X^{t},$$
$$X^{t+1} = \eta_{t} \left(S^{t}\right), \qquad \hat{X}^{t+1} = h_{t}(S^{t}) \text{ (hard decision)}$$

Theorem [Liu, Hsieh, V '24]

Let η_t be Lipschitz for $t \ge 1$. Then for each $t \ge 1$,

$$\lim_{L \to \infty} \frac{1}{L} \sum_{\ell=1}^{L} \mathbb{1}\{\hat{\boldsymbol{x}}_{\ell}^{t+1} \neq \boldsymbol{x}_{\ell}\} = \mathbb{P}\left(h_t\left(\bar{\boldsymbol{x}} + \boldsymbol{g}^t\right) \neq \bar{\boldsymbol{x}}\right)$$

x ∈ {±√*E*}^d uniformly distributed among 2^k codewords
 g^t ∈ ℝ^d ~ N(0, Σ^t) independent of *x*

$$Z^{t} = Y - AX^{t} + \frac{1}{n}Z^{t-1} \left[\sum_{\ell=1}^{L} \eta_{t-1}' \left(s_{\ell}^{t-1}\right)\right]^{\top}$$
$$S^{t} = A^{\top}Z^{t} + X^{t},$$
$$X^{t+1} = \eta_{t} \left(S^{t}\right), \qquad \hat{X}^{t+1} = h_{t}(S^{t}) \text{ (hard decision)}$$

Theorem [Liu, Hsieh, V '24]

Let η_t be Lipschitz for $t \ge 1$. Then for each $t \ge 1$,

$$\lim_{L \to \infty} \frac{1}{L} \sum_{\ell=1}^{L} \mathbb{1}\{\hat{\boldsymbol{x}}_{\ell}^{t+1} \neq \boldsymbol{x}_{\ell}\} = \mathbb{P}\left(h_t\left(\bar{\boldsymbol{x}} + \boldsymbol{g}^t\right) \neq \bar{\boldsymbol{x}}\right)$$

x ∈ {±√*E*}^d uniformly distributed among 2^k codewords
 g^t ∈ ℝ^d ~ N(0, Σ^t) independent of *x*

Can extend result to spatially coupled A (a) (a)

Choice of denoiser η_t

$$Z^{t} = Y - AX^{t} + \frac{1}{n}Z^{t-1} \left[\sum_{\ell=1}^{L} \eta_{t-1}' \left(s_{\ell}^{t-1}\right)\right]^{\top}$$
$$S^{t} = A^{\top}Z^{t} + X^{t},$$
$$X^{t+1} = \eta_{t} \left(S^{t}\right), \qquad \hat{X}^{t+1} = h_{t}(S^{t}) \text{ (hard decision)}$$

Bayes-optimal denoiser $\eta_t(s) = \mathbb{E}[\bar{x} \mid \bar{x} + g^t = s]$ Requires averaging over 2^k codewords from (k, d) code

Choice of denoiser η_t

$$Z^{t} = Y - AX^{t} + \frac{1}{n}Z^{t-1} \left[\sum_{\ell=1}^{L} \eta_{t-1}' \left(s_{\ell}^{t-1}\right)\right]^{\top}$$
$$S^{t} = A^{\top}Z^{t} + X^{t},$$
$$X^{t+1} = \eta_{t} \left(S^{t}\right), \qquad \hat{X}^{t+1} = h_{t}(S^{t}) \text{ (hard decision)}$$

Bayes-optimal denoiser $\eta_t(s) = \mathbb{E}[\bar{x} \mid \bar{x} + g^t = s]$ Requires averaging over 2^k codewords from (k, d) code

BP denoiser when \bar{x} drawn from binary LDPC code η^{BP} : BP decoding on each row of \boldsymbol{S}^t AMP with BP denoisers: [Amalladine et al. '22], [Ebert et al., '23]

User payload = 120 bits, Target BER 10^{-4}

イロト イヨト イヨト イヨト

User payload = 360 bits, Target BER 10^{-4}

э

イロト イヨト イヨト イヨト

Coded binary CDMA is (almost) all you need!

Many-user GMAC with random user activity

- Each user active with probability α
- Errors: Misdetections, False Alarms, Active-user Errors
- ► Tradeoff between E_b/N_0 and user density μ for given target error rates

CDMA-based coding

$$\boldsymbol{A} = \begin{bmatrix} \uparrow & \dots & \dots & \uparrow \\ \boldsymbol{a}_1 & \dots & \dots & \boldsymbol{a}_L \\ \downarrow & \dots & \dots & \downarrow \end{bmatrix}, \qquad \boldsymbol{X} = \begin{bmatrix} \leftarrow & \boldsymbol{x}_1 & \rightarrow \\ & \vdots & \\ \leftarrow & \boldsymbol{x}_L & \rightarrow \end{bmatrix}$$

▶ If user *i* is inactive, $\mathbf{x}_i = \mathbf{0}$. Otherwise $\mathbf{x}_i \in \{\pm \sqrt{E}\}^d$

$$\boldsymbol{Y} = \sum_{i=1}^{L} \boldsymbol{a}_i \boldsymbol{x}_i + \text{ noise } = \boldsymbol{A}\boldsymbol{X} + \text{ noise}$$

AMP decoder with denoiser tailored to row-wise prior on X

Target max $\{p_{\mathrm{MD}}, p_{\mathrm{FA}}\} + p_{\mathrm{AUE}} < 0.01$

User payload k = 6, and $\alpha = 0.3$

Achievability bounds: random codebooks and ML decoding

Proof techniques build on [Ngo et al. '22] unsourced setting

Ongoing and Future Work

- Coded CDMA with longer LDPC codes
- Improved bounds for random user activity
- Extension to unsourced random access

Ongoing and Future Work

- Coded CDMA with longer LDPC codes
- Improved bounds for random user activity
- Extension to unsourced random access

K. Hsieh, C. Rush, and R. Venkataramanan, *Near-optimal coding for many-user multiple access channels*, IEEE Journal on Selected Areas in Information Theory, March 2022

X. Liu, K. Hsieh, and R. Venkataramanan, *Coded many-user multiple access via AMP*, https://arxiv.org/abs/2402.05625, 2024

X. Liu, P. Pascual Cobo, and R. Venkataramanan, *Many-user multiple access with random user activity* (coming soon)