Multiple Support Recovery Using Very Few Measurements Per Sample

Lekshmi Ramesh¹

Joint work with: Chandra R. Murthy 2 $\,$ Himanshu Tyagi 2

¹Columbia University

²Indian Institue of Science, Bangalore

Algorithmic Structures for Uncoordinated Communications and Statistical Inference in Exceedingly Large Spaces Banff, March 2024

- Multiple support recovery
 - Setup and background
 - The case of very few measurements
- A spectral algorithm
- Sample complexity upper bound
- Discussion and Open problems

Problem Setting

• Samples X_1, \ldots, X_n in \mathbb{R}^d , each sample has k nonzero entries

- Samples X_1, \ldots, X_n in \mathbb{R}^d , each sample has k nonzero entries
- For each X_i , the location of the nonzero entries is called the support of X_i , denoted $\operatorname{supp}(X_i)$

- Samples X_1, \ldots, X_n in \mathbb{R}^d , each sample has k nonzero entries
- For each X_i , the location of the nonzero entries is called the support of X_i , denoted $\operatorname{supp}(X_i)$
- The support of each sample is drawn from a small set of allowed supports

$$\operatorname{supp}(X_i) \in \{\mathcal{S}_1, \dots, \mathcal{S}_\ell\}$$

where S_i are subsets of [d] of cardinality k

• Example: Two allowed supports $S_1 = \{1, 2\}$ and $S_2 = \{3, 5\}$

• Example: Two allowed supports $S_1 = \{1, 2\}$ and $S_2 = \{3, 5\}$

• We only observe low-dimensional linear projections

$$Y_i = \Phi_i X_i, \ i \in [n],$$

where $\Phi_i \in \mathbb{R}^{m \times d}$ with m < d

• Example: Two allowed supports $S_1 = \{1, 2\}$ and $S_2 = \{3, 5\}$

• We only observe low-dimensional linear projections

$$Y_i = \Phi_i X_i, \ i \in [n],$$

where $\Phi_i \in \mathbb{R}^{m \times d}$ with m < d

Given
$$\{\Phi_i, Y_i\}_{i=1}^n$$
, recover $\{\mathcal{S}_1, \dots, \mathcal{S}_\ell\}$

• Coordinate clustering/feature clustering problems can be understood using our formulation

• Coordinate clustering/feature clustering problems can be understood using our formulation

• Coordinate clustering/feature clustering problems can be understood using our formulation

Distributed user profiling

• Coordinate clustering/feature clustering problems can be understood using our formulation

- Distributed user profiling
 - Users have profile vectors indicating ratings/preferences for features (e.g. type of website visited)

• Coordinate clustering/feature clustering problems can be understood using our formulation

- Distributed user profiling
 - Users have profile vectors indicating ratings/preferences for features (e.g. type of website visited)
 - For a given population, center wants to find features that occur together

Background

Mixed linear models

• Used to model heterogeneous data: population can be divided into groups, linear model within each group

Mixed linear models

• Used to model heterogeneous data: population can be divided into groups, linear model within each group

 Similar setting: Mixture of linear regressions [De Veaux 1989; Chen 2013; Chaganty 2013; Yin 2019; Li 2020]
Phase retrieval [Candès 2013; Netrapalli 2014; Eldar 2014; Jaganathan 2015]
Learning mixtures of low-rank models [Chen 2021]

Mixed linear models

- Used to model heterogeneous data: population can be divided into groups, linear model within each group
- Similar setting: Mixture of linear regressions [De Veaux 1989; Chen 2013; Chaganty 2013; Yin 2019; Li 2020] Phase retrieval [Candès 2013; Netrapalli 2014; Eldar 2014; Jaganathan 2015] Learning mixtures of low-rank models [Chen 2021]
- Usually focus either on worst-case formulation or on recovering data vectors

Mixed linear models

- Used to model heterogeneous data: population can be divided into groups, linear model within each group
- Similar setting: Mixture of linear regressions [De Veaux 1989; Chen 2013; Chaganty 2013; Yin 2019; Li 2020] Phase retrieval [Candès 2013; Netrapalli 2014; Eldar 2014; Jaganathan 2015] Learning mixtures of low-rank models [Chen 2021]
- Usually focus either on worst-case formulation or on recovering data vectors
- Current algorithms require at least roughly k measurements per sample can this be reduced?

• Can operate with m < k measurements per sample unlike conventional algorithms, but require more samples

L. Ramesh, C. R. Murthy, and H. Tyagi. "Phase Transitions for Support Recovery from Gaussian Linear Measurements", ISIT 2021 • Two sets of unknowns: labels associating measurements to supports, and the underlying supports

- Two sets of unknowns: labels associating measurements to supports, and the underlying supports
- Given knowledge of the labels, can group together measurements corresponding to same support and recover each support

- Two sets of unknowns: labels associating measurements to supports, and the underlying supports
- Given knowledge of the labels, can group together measurements corresponding to same support and recover each support
- Alternatively, if we have roughly k measurements per sample, can use standard algorithms on each sample and recover each support

- Two sets of unknowns: labels associating measurements to supports, and the underlying supports
- Given knowledge of the labels, can group together measurements corresponding to same support and recover each support
- Alternatively, if we have roughly k measurements per sample, can use standard algorithms on each sample and recover each support
- When labeling not known and m < k?

• Is it possible to recover (S_1, \ldots, S_ℓ) when labeling not known and m < k?

• Is it possible to recover (S_1, \ldots, S_ℓ) when labeling not known and m < k?

Yes, we will see an efficient algorithm for multiple support recovery from very few measurements

- Is it possible to recover (S_1, \ldots, S_ℓ) when labeling not known and m < k?
 - Yes, we will see an efficient algorithm for multiple support recovery from very few measurements
- How many samples are required for recovery?

• Is it possible to recover (S_1, \ldots, S_ℓ) when labeling not known and m < k?

Yes, we will see an efficient algorithm for multiple support recovery from very few measurements

• How many samples are required for recovery?

We can approximately recover all the supports using roughly $(k\ell/m)^4$ samples

A Spectral Algorithm

• We will assume supports to be disjoint, and a constant fraction of samples corresponding to each support

- We will assume supports to be disjoint, and a constant fraction of samples corresponding to each support
- The sample covariance matrix has a block structure (under permutation of its rows and columns)

- We will assume supports to be disjoint, and a constant fraction of samples corresponding to each support
- The sample covariance matrix has a block structure (under permutation of its rows and columns)

 Unknown permutation can be found using eigenvectors of sample covariance matrix, after normalizing each row by its row sum

From fully observed data

• Unknown permutation can be found using eigenvectors of sample covariance matrix, after normalizing each row by its row sum

From fully observed data

• Unknown permutation can be found using eigenvectors of sample covariance matrix, after normalizing each row by its row sum

■ When there are ℓ blocks (supports), use the top-ℓ eigenvectors and a nearest neighbor step

[[]F. McSherry, 2001]; [Ng et al., 2002]; [Newman, 2006].

• Can a similar approach be used when we only have linear measurements of the samples?

• Can a similar approach be used when we only have linear measurements of the samples?

Yes, we will run spectral clustering using coordinate-wise variance estimate $a_i = (\Phi_i^\top Y_i) \circ (\Phi_i^\top Y_i)$

• Can a similar approach be used when we only have linear measurements of the samples?

Yes, we will run spectral clustering using coordinate-wise variance estimate $a_i = (\Phi_i^\top Y_i) \circ (\Phi_i^\top Y_i)$

 $a_{iu}a_{iv} = \begin{cases} \text{large, when } (u, v) \text{ in same support,} \\ \text{small, when } (u, v) \text{ in different supports.} \end{cases}$

• Can a similar approach be used when we only have linear measurements of the samples?

Yes, we will run spectral clustering using coordinate-wise variance estimate $a_i = (\Phi_i^{\top} Y_i) \circ (\Phi_i^{\top} Y_i)$

$$a_{iu}a_{iv} = \begin{cases} \text{large, when } (u, v) \text{ in same support,} \\ \text{small, when } (u, v) \text{ in different supports} \end{cases}$$

• Performing spectral clustering on $\sum_{i=1}^{n} a_i a_i^{\top} \in \mathbb{R}^{d \times d}$ is computationally intensive

• Can a similar approach be used when we only have linear measurements of the samples?

Yes, we will run spectral clustering using coordinate-wise variance estimate $a_i = (\Phi_i^{\top} Y_i) \circ (\Phi_i^{\top} Y_i)$

 $a_{iu}a_{iv} = \begin{cases} \text{large, when } (u, v) \text{ in same support,} \\ \text{small, when } (u, v) \text{ in different supports.} \end{cases}$

• Performing spectral clustering on $\sum_{i=1}^{n} a_i a_i^{\top} \in \mathbb{R}^{d \times d}$ is computationally intensive

We will first estimate the union $\cup_{i=1}^{\ell} S_i$, and run spectral clustering restricted to the union

• Step 1. Compute variance estimates $a_i = (\Phi_i^\top Y_i) \circ (\Phi_i^\top Y_i) \in \mathbb{R}^d$ for each $i \in [n]$

- Step 1. Compute variance estimates $a_i = (\Phi_i^\top Y_i) \circ (\Phi_i^\top Y_i) \in \mathbb{R}^d$ for each $i \in [n]$
- Step 2. Compute sample mean $(1/n) \sum_{i=1}^{n} a_i$, top $k\ell$ coordinates give estimate \hat{S}_{un} for the union

- Step 1. Compute variance estimates $a_i = (\Phi_i^\top Y_i) \circ (\Phi_i^\top Y_i) \in \mathbb{R}^d$ for each $i \in [n]$
- Step 2. Compute sample mean $(1/n) \sum_{i=1}^{n} a_i$, top $k\ell$ coordinates give estimate \hat{S}_{un} for the union
- Step 3. Perform spectral clustering on sample covariance matrix $T = (1/n) \sum_{i=1}^{n} (a_i)_{\hat{\mathcal{S}}_{un}} (a_i)_{\hat{\mathcal{S}}_{un}}^{\top}$ to partition the union into ℓ supports

- Step 1. Compute variance estimates $a_i = (\Phi_i^\top Y_i) \circ (\Phi_i^\top Y_i) \in \mathbb{R}^d$ for each $i \in [n]$
- Step 2. Compute sample mean $(1/n) \sum_{i=1}^{n} a_i$, top $k\ell$ coordinates give estimate \hat{S}_{un} for the union
- Step 3. Perform spectral clustering on sample covariance matrix $T = (1/n) \sum_{i=1}^{n} (a_i)_{\hat{\mathcal{S}}_{un}} (a_i)_{\hat{\mathcal{S}}_{un}}^{\top}$ to partition the union into ℓ supports
- Second order statistic recovers the union, fourth order statistic required to partition the union

Analyzing the Algorithm

• Our analysis assumes a subgaussian generative model for the samples and measurement matrices

- Our analysis assumes a subgaussian generative model for the samples and measurement matrices
- We seek approximate recovery of the supports up to permutation of the support labels

- Our analysis assumes a subgaussian generative model for the samples and measurement matrices
- We seek approximate recovery of the supports up to permutation of the support labels
- The smallest n for which an estimator satisfying the recovery criterion exists is the sample complexity n^*

- Our analysis assumes a subgaussian generative model for the samples and measurement matrices
- We seek approximate recovery of the supports up to permutation of the support labels
- The smallest n for which an estimator satisfying the recovery criterion exists is the sample complexity n^*

- Our analysis assumes a subgaussian generative model for the samples and measurement matrices
- We seek approximate recovery of the supports up to permutation of the support labels
- The smallest n for which an estimator satisfying the recovery criterion exists is the sample complexity n^*

Theorem

Let $(\log k\ell)^2 \le m < k$. Then,

$$n^* = \tilde{O}\left(\left(\frac{k\ell}{m}\right)^4\right).$$

Proof Sketch

Analyzing the two steps

Recovery of the union. Can recover the union with roughly $k^2 \ell^2 \log(d/m)$ samples¹

¹L. Ramesh, C. R. Murthy, and H. Tyagi "Sample-Measurement Tradeoff for Support Recovery under a Subgaussian Prior", ISIT 2019.

Analyzing the two steps

- **Recovery of the union.** Can recover the union with roughly $k^2 \ell^2 \log(d/m)$ samples¹
- Recovering each support. The expected value of the clustering matrix T has a block structure (under permutation of rows and columns)

$$\mathbb{E}[T] = \begin{bmatrix} \mu_{0} & \mu^{s} & \mu^{d} & \mu^{d} \\ \mu^{s} & \mu_{0} & \mu^{d} & \mu^{d} \\ \mu^{d} & \mu^{d} & \mu^{d} & \mu^{s} \\ \mu^{d} & \mu^{d} & \mu^{s} & \mu_{0} \end{bmatrix} \Big\} S_{2}$$

¹L. Ramesh, C. R. Murthy, and H. Tyagi "Sample-Measurement Tradeoff for Support Recovery under a Subgaussian Prior", ISIT 2019.

• Eigenvectors of the expected clustering matrix $\mathbb{E}\left[T\right]$ has a repeating rows structure

Properties of the eigenvectors

• Eigenvectors of the expected clustering matrix $\mathbb{E}[T]$ has a repeating rows structure

Properties of the eigenvectors

• Eigenvectors of the expected clustering matrix $\mathbb{E}[T]$ has a repeating rows structure

A nearest neighbor step can then partition the union estimate into ℓ subsets

• Can show that the sample version of the clustering matrix T suffices when we have roughly $k^4 \ell^4/m^4$ samples

- Can show that the sample version of the clustering matrix T suffices when we have roughly $k^4 \ell^4/m^4$ samples
- Eigenvectors of T and $\mathbb{E}[T]$ are close when $||T \mathbb{E}[T]||_{op}$ is small (Davis-Kahan theorem)

- Can show that the sample version of the clustering matrix T suffices when we have roughly $k^4 \ell^4/m^4$ samples
- Eigenvectors of T and $\mathbb{E}[T]$ are close when $||T \mathbb{E}[T]||_{op}$ is small (Davis-Kahan theorem)
- Showing $||T \mathbb{E}[T]||_{op}$ is small:

- Can show that the sample version of the clustering matrix T suffices when we have roughly $k^4 \ell^4/m^4$ samples
- Eigenvectors of T and $\mathbb{E}[T]$ are close when $||T \mathbb{E}[T]||_{op}$ is small (Davis-Kahan theorem)
- Showing $||T \mathbb{E}[T]||_{op}$ is small:
 - $\blacksquare\ T$ is a sum of rank-one matrices with heavy-tailed entries

- Can show that the sample version of the clustering matrix T suffices when we have roughly $k^4 \ell^4/m^4$ samples
- Eigenvectors of T and $\mathbb{E}[T]$ are close when $||T \mathbb{E}[T]||_{op}$ is small (Davis-Kahan theorem)
- Showing $||T \mathbb{E}[T]||_{op}$ is small:
 - $\blacksquare \ T$ is a sum of rank-one matrices with heavy-tailed entries
 - Standard methods difficult to adapt to this setting

- Can show that the sample version of the clustering matrix T suffices when we have roughly $k^4 \ell^4/m^4$ samples
- Eigenvectors of T and $\mathbb{E}[T]$ are close when $||T \mathbb{E}[T]||_{op}$ is small (Davis-Kahan theorem)
- Showing $||T \mathbb{E}[T]||_{op}$ is small:
 - $\blacksquare \ T$ is a sum of rank-one matrices with heavy-tailed entries
 - Standard methods difficult to adapt to this setting
 - We use a result by Rudelson² to bound $||T \mathbb{E}[T]||_{op}$ under relaxed assumptions on moments

²M. Rudelson. Random vectors in the isotropic position, JFA 1999.

• We developed a spectral algorithm that can recover multiple supports from linear observations

- We developed a spectral algorithm that can recover multiple supports from linear observations
- Works with fewer than k measurements per sample, requires roughly $k^4 \ell^4/m^4$ samples

- We developed a spectral algorithm that can recover multiple supports from linear observations
- Works with fewer than k measurements per sample, requires roughly $k^4\ell^4/m^4$ samples
- Open questions: overlapping supports; imbalanced groups; lower bounds

- We developed a spectral algorithm that can recover multiple supports from linear observations
- Works with fewer than k measurements per sample, requires roughly $k^4\ell^4/m^4$ samples
- Open questions: overlapping supports; imbalanced groups; lower bounds

Thank you

For more details: "Multiple Support Recovery Using Very Few Measurements Per Sample", IEEE Transactions on Signal Processing, May 2022 and ISIT 2021.