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Problem Setting



The multiple support recovery problem

Samples X1, . . . , Xn in Rd, each sample has k nonzero entries

For each Xi, the location of the nonzero entries is called the
support of Xi, denoted supp(Xi)

The support of each sample is drawn from a small set of allowed
supports

supp(Xi) ∈ {S1, . . . , S`}

where Si are subsets of [d] of cardinality k
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The multiple support recovery problem

Example: Two allowed supports S1 = {1, 2} and S2 = {3, 5}

. . .

X1 X2 X3 Xn−2 Xn−1 Xn

We only observe low-dimensional linear projections

Yi = ΦiXi, i ∈ [n],

where Φi ∈ Rm×d with m < d

Given {Φi, Yi}n
i=1, recover {S1, . . . , S`}
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Application to feature clustering

Coordinate clustering/feature clustering problems can be
understood using our formulation

Distributed user profiling

Users have profile vectors indicating ratings/preferences for features
(e.g. type of website visited)
For a given population, center wants to find features that occur
together

3



Application to feature clustering

Coordinate clustering/feature clustering problems can be
understood using our formulation

Distributed user profiling

Users have profile vectors indicating ratings/preferences for features
(e.g. type of website visited)
For a given population, center wants to find features that occur
together

3



Application to feature clustering

Coordinate clustering/feature clustering problems can be
understood using our formulation

Distributed user profiling

Users have profile vectors indicating ratings/preferences for features
(e.g. type of website visited)
For a given population, center wants to find features that occur
together

3



Application to feature clustering

Coordinate clustering/feature clustering problems can be
understood using our formulation

Distributed user profiling
Users have profile vectors indicating ratings/preferences for features
(e.g. type of website visited)

For a given population, center wants to find features that occur
together

3



Application to feature clustering

Coordinate clustering/feature clustering problems can be
understood using our formulation

Distributed user profiling
Users have profile vectors indicating ratings/preferences for features
(e.g. type of website visited)
For a given population, center wants to find features that occur
together

3



Background



Related work
Mixed linear models

Used to model heterogeneous data: population can be divided into
groups, linear model within each group

Similar setting:
Mixture of linear regressions [De Veaux 1989; Chen 2013;
Chaganty 2013; Yin 2019; Li 2020]
Phase retrieval [Candès 2013; Netrapalli 2014; Eldar 2014;
Jaganathan 2015]
Learning mixtures of low-rank models [Chen 2021]

Usually focus either on worst-case formulation or on recovering
data vectors

Current algorithms require at least roughly k measurements per
sample – can this be reduced?
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The common support case (` = 1)

. . .

X1X2 ··· Xn

k/m

n∗

1 γ

k
m

log d

measurement-rich regime

k2
m2 log d

measurement-constrained regime

Can operate with m < k measurements per sample unlike
conventional algorithms, but require more samples

L. Ramesh, C. R. Murthy, and H. Tyagi. “Phase Transitions for Support
Recovery from Gaussian Linear Measurements”, ISIT 2021 5
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Multiple supports (` > 1)

Two sets of unknowns: labels associating measurements to
supports, and the underlying supports

Given knowledge of the labels, can group together measurements
corresponding to same support and recover each support

Alternatively, if we have roughly k measurements per sample, can
use standard algorithms on each sample and recover each support

When labeling not known and m < k?
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Multiple supports (` > 1)

Is it possible to recover (S1, . . . , S`) when labeling not known and
m < k?

Yes, we will see an efficient algorithm for multiple support
recovery from very few measurements

How many samples are required for recovery?

We can approximately recover all the supports using roughly
(k`/m)4 samples
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A Spectral Algorithm



From fully observed data

We will assume supports to be disjoint, and a constant fraction of
samples corresponding to each support

The sample covariance matrix has a block structure (under
permutation of its rows and columns)

× = Permute rows−−−−−−−−→
and columns

X X> XX> Π1XX>Π2
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From fully observed data

Unknown permutation can be found using eigenvectors of sample
covariance matrix, after normalizing each row by its row sum

× Second leading eigenvector−−−−−−−−−−−−−−−−→


+
−
+
−
−


X X>

When there are ` blocks (supports), use the top-` eigenvectors and
a nearest neighbor step

[F. McSherry, 2001]; [Ng et al., 2002]; [Newman, 2006].
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From linear measurements

Can a similar approach be used when we only have linear
measurements of the samples?

Yes, we will run spectral clustering using coordinate-wise variance
estimate ai = (Φ>

i Yi) ◦ (Φ>
i Yi)

aiuaiv =
{

large, when (u, v) in same support,
small, when (u, v) in different supports.

Performing spectral clustering on
∑n

i=1 aia
>
i ∈ Rd×d is

computationally intensive
We will first estimate the union ∪`

i=1Si, and run spectral clustering
restricted to the union
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The algorithm

Step 1. Compute variance estimates ai = (Φ>
i Yi) ◦ (Φ>

i Yi) ∈ Rd for
each i ∈ [n]

Step 2. Compute sample mean (1/n)
∑n

i=1 ai, top k` coordinates
give estimate Ŝun for the union

Step 3. Perform spectral clustering on sample covariance matrix
T = (1/n)

∑n
i=1(ai)Ŝun

(ai)>
Ŝun

to partition the union into ` supports

Second order statistic recovers the union, fourth order statistic
required to partition the union

11
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Analyzing the Algorithm



Sample complexity of multiple support recovery

Our analysis assumes a subgaussian generative model for the
samples and measurement matrices

We seek approximate recovery of the supports up to permutation
of the support labels

The smallest n for which an estimator satisfying the recovery
criterion exists is the sample complexity n∗

Theorem

Let (log k`)2 ≤ m < k. Then,

n∗ = Õ

((
k`

m

)4)
.

12
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((
k`

m

)4)
.

12



Sample complexity of multiple support recovery

Our analysis assumes a subgaussian generative model for the
samples and measurement matrices

We seek approximate recovery of the supports up to permutation
of the support labels

The smallest n for which an estimator satisfying the recovery
criterion exists is the sample complexity n∗

Theorem

Let (log k`)2 ≤ m < k. Then,

n∗ = Õ
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Proof Sketch



Analyzing the two steps

Recovery of the union. Can recover the union with roughly
k2`2 log(d/m) samples1

Recovering each support. The expected value of the clustering
matrix T has a block structure (under permutation of rows and
columns)

1L. Ramesh, C. R. Murthy, and H. Tyagi “Sample-Measurement Tradeoff for
Support Recovery under a Subgaussian Prior”, ISIT 2019. 13
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Properties of the eigenvectors

Eigenvectors of the expected clustering matrix E [T ] has a
repeating rows structure

` leading eigenvectors
−−−−−−−−−→

E [T ] ∈ Rk`×k` V ∈ Rk`×`

A nearest neighbor step can then partition the union estimate into
` subsets

14
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Extending to sample-based statistic

Can show that the sample version of the clustering matrix T
suffices when we have roughly k4`4/m4 samples

Eigenvectors of T and E [T ] are close when ‖T − E [T ] ‖op is small
(Davis-Kahan theorem)

Showing ‖T − E [T ] ‖op is small:

T is a sum of rank-one matrices with heavy-tailed entries

Standard methods difficult to adapt to this setting

We use a result by Rudelson2 to bound ‖T − E [T ] ‖op under relaxed
assumptions on moments

2M. Rudelson. Random vectors in the isotropic position, JFA 1999.
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Conclusion

We developed a spectral algorithm that can recover multiple
supports from linear observations

Works with fewer than k measurements per sample, requires
roughly k4`4/m4 samples

Open questions: overlapping supports; imbalanced groups; lower
bounds

Thank you
For more details: “Multiple Support Recovery Using Very Few
Measurements Per Sample”, IEEE Transactions on Signal Processing,
May 2022 and ISIT 2021.

16



Conclusion

We developed a spectral algorithm that can recover multiple
supports from linear observations

Works with fewer than k measurements per sample, requires
roughly k4`4/m4 samples

Open questions: overlapping supports; imbalanced groups; lower
bounds

Thank you
For more details: “Multiple Support Recovery Using Very Few
Measurements Per Sample”, IEEE Transactions on Signal Processing,
May 2022 and ISIT 2021.

16



Conclusion

We developed a spectral algorithm that can recover multiple
supports from linear observations

Works with fewer than k measurements per sample, requires
roughly k4`4/m4 samples

Open questions: overlapping supports; imbalanced groups; lower
bounds

Thank you
For more details: “Multiple Support Recovery Using Very Few
Measurements Per Sample”, IEEE Transactions on Signal Processing,
May 2022 and ISIT 2021.

16



Conclusion

We developed a spectral algorithm that can recover multiple
supports from linear observations

Works with fewer than k measurements per sample, requires
roughly k4`4/m4 samples

Open questions: overlapping supports; imbalanced groups; lower
bounds

Thank you
For more details: “Multiple Support Recovery Using Very Few
Measurements Per Sample”, IEEE Transactions on Signal Processing,
May 2022 and ISIT 2021.

16


