Multiple Support Recovery Using Very Few Measurements Per Sample

Lekshmi Ramesh ${ }^{1}$

Joint work with: Chandra R. Murthy ${ }^{2}$ Himanshu Tyagi ${ }^{2}$
${ }^{1}$ Columbia University
${ }^{2}$ Indian Institue of Science, Bangalore

Algorithmic Structures for Uncoordinated Communications and Statistical Inference in Exceedingly Large Spaces Banff, March 2024

Outline

■ Multiple support recovery

- Setup and background
- The case of very few measurements
- A spectral algorithm
- Sample complexity upper bound

■ Discussion and Open problems

Problem Setting

The multiple support recovery problem

■ Samples X_{1}, \ldots, X_{n} in \mathbb{R}^{d}, each sample has k nonzero entries

The multiple support recovery problem

■ Samples X_{1}, \ldots, X_{n} in \mathbb{R}^{d}, each sample has k nonzero entries
■ For each X_{i}, the location of the nonzero entries is called the support of X_{i}, denoted $\operatorname{supp}\left(X_{i}\right)$

The multiple support recovery problem

■ Samples X_{1}, \ldots, X_{n} in \mathbb{R}^{d}, each sample has k nonzero entries
■ For each X_{i}, the location of the nonzero entries is called the support of X_{i}, denoted $\operatorname{supp}\left(X_{i}\right)$

- The support of each sample is drawn from a small set of allowed supports

$$
\operatorname{supp}\left(X_{i}\right) \in\left\{\mathcal{S}_{1}, \ldots, \mathcal{S}_{\ell}\right\}
$$

where \mathcal{S}_{i} are subsets of $[d]$ of cardinality k

The multiple support recovery problem

- Example: Two allowed supports $\mathcal{S}_{1}=\{1,2\}$ and $\mathcal{S}_{2}=\{3,5\}$

The multiple support recovery problem

- Example: Two allowed supports $\mathcal{S}_{1}=\{1,2\}$ and $\mathcal{S}_{2}=\{3,5\}$

$\begin{array}{lll}X_{1} & X_{2} & X_{3}\end{array}$

$X_{n-2} X_{n-1} X_{n}$

■ We only observe low-dimensional linear projections

$$
Y_{i}=\Phi_{i} X_{i}, i \in[n],
$$

where $\Phi_{i} \in \mathbb{R}^{m \times d}$ with $m<d$

The multiple support recovery problem

- Example: Two allowed supports $\mathcal{S}_{1}=\{1,2\}$ and $\mathcal{S}_{2}=\{3,5\}$

$\begin{array}{lll}X_{1} & X_{2} & X_{3}\end{array}$

$X_{n-2} X_{n-1} X_{n}$

■ We only observe low-dimensional linear projections

$$
Y_{i}=\Phi_{i} X_{i}, \quad i \in[n],
$$

where $\Phi_{i} \in \mathbb{R}^{m \times d}$ with $m<d$
■ Given $\left\{\Phi_{i}, Y_{i}\right\}_{i=1}^{n}$, recover $\left\{\mathcal{S}_{1}, \ldots, \mathcal{S}_{\ell}\right\}$

Application to feature clustering

■ Coordinate clustering/feature clustering problems can be understood using our formulation

Application to feature clustering

- Coordinate clustering/feature clustering problems can be understood using our formulation

Application to feature clustering

■ Coordinate clustering/feature clustering problems can be understood using our formulation

- Distributed user profiling

Application to feature clustering

■ Coordinate clustering/feature clustering problems can be understood using our formulation

■ Distributed user profiling

- Users have profile vectors indicating ratings/preferences for features (e.g. type of website visited)

Application to feature clustering

■ Coordinate clustering/feature clustering problems can be understood using our formulation

■ Distributed user profiling

- Users have profile vectors indicating ratings/preferences for features (e.g. type of website visited)
- For a given population, center wants to find features that occur together

Background

Related work

Mixed linear models

■ Used to model heterogeneous data: population can be divided into groups, linear model within each group

Related work

Mixed linear models

- Used to model heterogeneous data: population can be divided into groups, linear model within each group
- Similar setting:

Mixture of linear regressions [De Veaux 1989; Chen 2013;
Chaganty 2013; Yin 2019; Li 2020]
Phase retrieval [Candès 2013; Netrapalli 2014; Eldar 2014; Jaganathan 2015]
Learning mixtures of low-rank models [Chen 2021]

Related work

Mixed linear models

- Used to model heterogeneous data: population can be divided into groups, linear model within each group
- Similar setting:

Mixture of linear regressions [De Veaux 1989; Chen 2013;
Chaganty 2013; Yin 2019; Li 2020]
Phase retrieval [Candès 2013; Netrapalli 2014; Eldar 2014; Jaganathan 2015] Learning mixtures of low-rank models [Chen 2021]

- Usually focus either on worst-case formulation or on recovering data vectors

Related work

Mixed linear models

- Used to model heterogeneous data: population can be divided into groups, linear model within each group
- Similar setting:

Mixture of linear regressions [De Veaux 1989; Chen 2013;
Chaganty 2013; Yin 2019; Li 2020]
Phase retrieval [Candès 2013; Netrapalli 2014; Eldar 2014; Jaganathan 2015] Learning mixtures of low-rank models [Chen 2021]

- Usually focus either on worst-case formulation or on recovering data vectors

■ Current algorithms require at least roughly k measurements per sample - can this be reduced?

The common support case $(\ell=1)$

measurement-rich regime

The common support case $(\ell=1)$

measurement-rich regime

The common support case $(\ell=1)$

■ Can operate with $m<k$ measurements per sample unlike conventional algorithms, but require more samples
L. Ramesh, C. R. Murthy, and H. Tyagi. "Phase Transitions for Support Recovery from Gaussian Linear Measurements", ISIT 2021

Multiple supports $(\ell>1)$

■ Two sets of unknowns: labels associating measurements to supports, and the underlying supports

Multiple supports $(\ell>1)$

■ Two sets of unknowns: labels associating measurements to supports, and the underlying supports

■ Given knowledge of the labels, can group together measurements corresponding to same support and recover each support

Multiple supports $(\ell>1)$

- Two sets of unknowns: labels associating measurements to supports, and the underlying supports

■ Given knowledge of the labels, can group together measurements corresponding to same support and recover each support

- Alternatively, if we have roughly k measurements per sample, can use standard algorithms on each sample and recover each support

Multiple supports $(\ell>1)$

- Two sets of unknowns: labels associating measurements to supports, and the underlying supports

■ Given knowledge of the labels, can group together measurements corresponding to same support and recover each support

- Alternatively, if we have roughly k measurements per sample, can use standard algorithms on each sample and recover each support
- When labeling not known and $m<k$?

Multiple supports $(\ell>1)$

■ Is it possible to recover $\left(\mathcal{S}_{1}, \ldots, \mathcal{S}_{\ell}\right)$ when labeling not known and $m<k$?

Multiple supports $(\ell>1)$

■ Is it possible to recover $\left(\mathcal{S}_{1}, \ldots, \mathcal{S}_{\ell}\right)$ when labeling not known and $m<k$?

Yes, we will see an efficient algorithm for multiple support recovery from very few measurements

Multiple supports $(\ell>1)$

■ Is it possible to recover $\left(\mathcal{S}_{1}, \ldots, \mathcal{S}_{\ell}\right)$ when labeling not known and $m<k$?

Yes, we will see an efficient algorithm for multiple support recovery from very few measurements

■ How many samples are required for recovery?

Multiple supports $(\ell>1)$

■ Is it possible to recover $\left(\mathcal{S}_{1}, \ldots, \mathcal{S}_{\ell}\right)$ when labeling not known and $m<k$?

Yes, we will see an efficient algorithm for multiple support recovery from very few measurements

■ How many samples are required for recovery?
We can approximately recover all the supports using roughly $(k \ell / m)^{4}$ samples

A Spectral Algorithm

From fully observed data

■ We will assume supports to be disjoint, and a constant fraction of samples corresponding to each support

From fully observed data

■ We will assume supports to be disjoint, and a constant fraction of samples corresponding to each support

- The sample covariance matrix has a block structure (under permutation of its rows and columns)

From fully observed data

■ We will assume supports to be disjoint, and a constant fraction of samples corresponding to each support

- The sample covariance matrix has a block structure (under permutation of its rows and columns)

X

X^{\top}

$X X^{\top}$

$\Pi_{1} X X^{\top} \Pi_{2}$

From fully observed data

■ Unknown permutation can be found using eigenvectors of sample covariance matrix, after normalizing each row by its row sum

From fully observed data

■ Unknown permutation can be found using eigenvectors of sample covariance matrix, after normalizing each row by its row sum

X

$$
\left[\begin{array}{l}
+ \\
- \\
+ \\
- \\
-
\end{array}\right]
$$

$$
X^{\top}
$$

From fully observed data

■ Unknown permutation can be found using eigenvectors of sample covariance matrix, after normalizing each row by its row sum

- When there are ℓ blocks (supports), use the top- ℓ eigenvectors and a nearest neighbor step

From linear measurements

■ Can a similar approach be used when we only have linear measurements of the samples?

From linear measurements

■ Can a similar approach be used when we only have linear measurements of the samples?

Yes, we will run spectral clustering using coordinate-wise variance estimate $a_{i}=\left(\Phi_{i}^{\top} Y_{i}\right) \circ\left(\Phi_{i}^{\top} Y_{i}\right)$

From linear measurements

■ Can a similar approach be used when we only have linear measurements of the samples?

Yes, we will run spectral clustering using coordinate-wise variance estimate $a_{i}=\left(\Phi_{i}^{\top} Y_{i}\right) \circ\left(\Phi_{i}^{\top} Y_{i}\right)$

$$
a_{i u} a_{i v}=\left\{\begin{array}{l}
\text { large, when }(u, v) \text { in same support } \\
\text { small, when }(u, v) \text { in different supports. }
\end{array}\right.
$$

From linear measurements

- Can a similar approach be used when we only have linear measurements of the samples?

Yes, we will run spectral clustering using coordinate-wise variance estimate $a_{i}=\left(\Phi_{i}^{\top} Y_{i}\right) \circ\left(\Phi_{i}^{\top} Y_{i}\right)$

$$
a_{i u} a_{i v}=\left\{\begin{array}{l}
\text { large, when }(u, v) \text { in same support }, \\
\text { small, when }(u, v) \text { in different supports. }
\end{array}\right.
$$

- Performing spectral clustering on $\sum_{i=1}^{n} a_{i} a_{i}^{\top} \in \mathbb{R}^{d \times d}$ is computationally intensive

From linear measurements

■ Can a similar approach be used when we only have linear measurements of the samples?

Yes, we will run spectral clustering using coordinate-wise variance estimate $a_{i}=\left(\Phi_{i}^{\top} Y_{i}\right) \circ\left(\Phi_{i}^{\top} Y_{i}\right)$

$$
a_{i u} a_{i v}=\left\{\begin{array}{l}
\text { large, when }(u, v) \text { in same support } \\
\text { small, when }(u, v) \text { in different supports. }
\end{array}\right.
$$

- Performing spectral clustering on $\sum_{i=1}^{n} a_{i} a_{i}^{\top} \in \mathbb{R}^{d \times d}$ is computationally intensive

We will first estimate the union $\cup_{i=1}^{\ell} \mathcal{S}_{i}$, and run spectral clustering restricted to the union

The algorithm

- Step 1. Compute variance estimates $a_{i}=\left(\Phi_{i}^{\top} Y_{i}\right) \circ\left(\Phi_{i}^{\top} Y_{i}\right) \in \mathbb{R}^{d}$ for each $i \in[n]$

The algorithm

- Step 1. Compute variance estimates $a_{i}=\left(\Phi_{i}^{\top} Y_{i}\right) \circ\left(\Phi_{i}^{\top} Y_{i}\right) \in \mathbb{R}^{d}$ for each $i \in[n]$
- Step 2. Compute sample mean $(1 / n) \sum_{i=1}^{n} a_{i}$, top $k \ell$ coordinates give estimate $\hat{\mathcal{S}}_{\text {un }}$ for the union

The algorithm

- Step 1. Compute variance estimates $a_{i}=\left(\Phi_{i}^{\top} Y_{i}\right) \circ\left(\Phi_{i}^{\top} Y_{i}\right) \in \mathbb{R}^{d}$ for each $i \in[n]$
- Step 2. Compute sample mean $(1 / n) \sum_{i=1}^{n} a_{i}$, top $k \ell$ coordinates give estimate $\hat{\mathcal{S}}_{\text {un }}$ for the union
- Step 3. Perform spectral clustering on sample covariance matrix $T=(1 / n) \sum_{i=1}^{n}\left(a_{i}\right)_{\hat{\mathcal{S}}_{\text {un }}}\left(a_{i}\right)_{\hat{\mathcal{S}}_{\text {un }}}^{\top}$ to partition the union into ℓ supports

The algorithm

■ Step 1. Compute variance estimates $a_{i}=\left(\Phi_{i}^{\top} Y_{i}\right) \circ\left(\Phi_{i}^{\top} Y_{i}\right) \in \mathbb{R}^{d}$ for each $i \in[n]$

- Step 2. Compute sample mean $(1 / n) \sum_{i=1}^{n} a_{i}$, top $k \ell$ coordinates give estimate $\hat{\mathcal{S}}_{\text {un }}$ for the union
- Step 3. Perform spectral clustering on sample covariance matrix $T=(1 / n) \sum_{i=1}^{n}\left(a_{i}\right)_{\hat{\mathcal{S}}_{\text {un }}}\left(a_{i}\right)_{\hat{\mathcal{S}}_{\text {un }}}^{\top}$ to partition the union into ℓ supports

■ Second order statistic recovers the union, fourth order statistic required to partition the union

Analyzing the Algorithm

Sample complexity of multiple support recovery

- Our analysis assumes a subgaussian generative model for the samples and measurement matrices

Sample complexity of multiple support recovery

- Our analysis assumes a subgaussian generative model for the samples and measurement matrices

■ We seek approximate recovery of the supports up to permutation of the support labels

Sample complexity of multiple support recovery

- Our analysis assumes a subgaussian generative model for the samples and measurement matrices

■ We seek approximate recovery of the supports up to permutation of the support labels

- The smallest n for which an estimator satisfying the recovery criterion exists is the sample complexity n^{*}

Sample complexity of multiple support recovery

- Our analysis assumes a subgaussian generative model for the samples and measurement matrices

■ We seek approximate recovery of the supports up to permutation of the support labels

- The smallest n for which an estimator satisfying the recovery criterion exists is the sample complexity n^{*}

Sample complexity of multiple support recovery

- Our analysis assumes a subgaussian generative model for the samples and measurement matrices

■ We seek approximate recovery of the supports up to permutation of the support labels

- The smallest n for which an estimator satisfying the recovery criterion exists is the sample complexity n^{*}

Theorem

Let $(\log k \ell)^{2} \leq m<k$. Then,

$$
n^{*}=\tilde{O}\left(\left(\frac{k \ell}{m}\right)^{4}\right)
$$

Proof Sketch

Analyzing the two steps

- Recovery of the union. Can recover the union with roughly $k^{2} \ell^{2} \log (d / m)$ samples ${ }^{1}$
${ }^{1}$ L. Ramesh, C. R. Murthy, and H. Tyagi "Sample-Measurement Tradeoff for Support Recovery under a Subgaussian Prior", ISIT 2019.

Analyzing the two steps

- Recovery of the union. Can recover the union with roughly $k^{2} \ell^{2} \log (d / m)$ samples ${ }^{1}$

■ Recovering each support. The expected value of the clustering matrix T has a block structure (under permutation of rows and columns)

$$
\left.\mathbb{E}[T]=\left[\begin{array}{ccc}
\begin{array}{|cc|}
\hline \mu_{0} & \mu^{s} \\
\mu^{s} & \mu_{0}
\end{array} & \left.\left.\begin{array}{cc}
\mu^{d} & \mu^{d} \\
\mu^{d} & \mu^{d} \\
\mu^{d} & \mu^{d} \\
\mu^{d} & \mu^{d}
\end{array} \begin{array}{ll}
\mu_{0} & \mu^{s} \\
\mu^{s} & \mu_{0}
\end{array}\right]\right\} \mathcal{S}_{1}
\end{array}\right]\right\} \mathcal{S}_{2}
$$

${ }^{1}$ L. Ramesh, C. R. Murthy, and H. Tyagi "Sample-Measurement Tradeoff for Support Recovery under a Subgaussian Prior", ISIT 2019.

Properties of the eigenvectors

■ Eigenvectors of the expected clustering matrix $\mathbb{E}[T]$ has a repeating rows structure

Properties of the eigenvectors

- Eigenvectors of the expected clustering matrix $\mathbb{E}[T]$ has a repeating rows structure

Properties of the eigenvectors

- Eigenvectors of the expected clustering matrix $\mathbb{E}[T]$ has a repeating rows structure

■ A nearest neighbor step can then partition the union estimate into ℓ subsets

Extending to sample-based statistic

- Can show that the sample version of the clustering matrix T suffices when we have roughly $k^{4} \ell^{4} / m^{4}$ samples

Extending to sample-based statistic

- Can show that the sample version of the clustering matrix T suffices when we have roughly $k^{4} \ell^{4} / m^{4}$ samples

■ Eigenvectors of T and $\mathbb{E}[T]$ are close when $\|T-\mathbb{E}[T]\|_{o p}$ is small (Davis-Kahan theorem)

Extending to sample-based statistic

- Can show that the sample version of the clustering matrix T suffices when we have roughly $k^{4} \ell^{4} / m^{4}$ samples

■ Eigenvectors of T and $\mathbb{E}[T]$ are close when $\|T-\mathbb{E}[T]\|_{o p}$ is small (Davis-Kahan theorem)

■ Showing $\|T-\mathbb{E}[T]\|_{o p}$ is small:

Extending to sample-based statistic

- Can show that the sample version of the clustering matrix T suffices when we have roughly $k^{4} \ell^{4} / m^{4}$ samples

■ Eigenvectors of T and $\mathbb{E}[T]$ are close when $\|T-\mathbb{E}[T]\|_{o p}$ is small (Davis-Kahan theorem)

■ Showing $\|T-\mathbb{E}[T]\|_{o p}$ is small:
■ T is a sum of rank-one matrices with heavy-tailed entries

Extending to sample-based statistic

- Can show that the sample version of the clustering matrix T suffices when we have roughly $k^{4} \ell^{4} / m^{4}$ samples

■ Eigenvectors of T and $\mathbb{E}[T]$ are close when $\|T-\mathbb{E}[T]\|_{o p}$ is small (Davis-Kahan theorem)

■ Showing $\|T-\mathbb{E}[T]\|_{o p}$ is small:

- T is a sum of rank-one matrices with heavy-tailed entries
- Standard methods difficult to adapt to this setting

Extending to sample-based statistic

- Can show that the sample version of the clustering matrix T suffices when we have roughly $k^{4} \ell^{4} / m^{4}$ samples

■ Eigenvectors of T and $\mathbb{E}[T]$ are close when $\|T-\mathbb{E}[T]\|_{o p}$ is small (Davis-Kahan theorem)

- Showing $\|T-\mathbb{E}[T]\|_{o p}$ is small:
- T is a sum of rank-one matrices with heavy-tailed entries
- Standard methods difficult to adapt to this setting
- We use a result by Rudelson ${ }^{2}$ to bound $\|T-\mathbb{E}[T]\|_{o p}$ under relaxed assumptions on moments

[^0]
Conclusion

■ We developed a spectral algorithm that can recover multiple supports from linear observations

Conclusion

■ We developed a spectral algorithm that can recover multiple supports from linear observations

■ Works with fewer than k measurements per sample, requires roughly $k^{4} \ell^{4} / m^{4}$ samples

Conclusion

■ We developed a spectral algorithm that can recover multiple supports from linear observations

■ Works with fewer than k measurements per sample, requires roughly $k^{4} \ell^{4} / m^{4}$ samples

■ Open questions: overlapping supports; imbalanced groups; lower bounds

Conclusion

- We developed a spectral algorithm that can recover multiple supports from linear observations

■ Works with fewer than k measurements per sample, requires roughly $k^{4} \ell^{4} / m^{4}$ samples

- Open questions: overlapping supports; imbalanced groups; lower bounds

Thank you

For more details: "Multiple Support Recovery Using Very Few Measurements Per Sample", IEEE Transactions on Signal Processing, May 2022 and ISIT 2021.

[^0]: ${ }^{2}$ M. Rudelson. Random vectors in the isotropic position, JFA 1999.

