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Satellites

Low Earth Orbit 

(LEO, 160-1000 km)

Medium Earth Orbit

(MEO, 5000-20000 km)

Geostationary Earth Orbit (GEO, 36000 km)

LEO and MEO can offer lower latency and higher throughput than GEO satellites.
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Comsat

FCC Open Sky Policy

Iridium

Starlink
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Mega-constellations

Starlink focuses on consumer broadband services. About 5000 operational satellites in orbit to date.

Kuiper’s focuses are similar. The initial design has 3,200+ satellites.

Others include OneWeb, Telesat Lightspeed, etc.

Required by the International Telecommunication Union (ITU) radio regulations and the FCC to
coordinate to prevent harmful mutual interference. Mostly in the 10-12 GHz band.

Fundamental questions:

What is the spectral efficiency? capacity?
Will interference be an issue?
How to best allocate satellite spectrum?
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Starlink 2nd Generation plan

ESO/Jos Francisco (josefrancisco.org)
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Propagation model

TX and RX typically have a large number of antennas (up to 1000s).

Line of sight.

Need beamforming to close links.

Each TX-RX channel matrix has rank-1:

H ∝



e jθ

e j2θ

...

...
e jtθ


[
e jφ e j2φ . . . e jrφ

]
= e(θ) eT (φ)
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Massive vector interference channel

n satellites, n ground terminals

Y1 = H1,1X1 + H1,2X2 + · · ·+ H1,nXn

Y2 = H2,1X1 + H2,2X2 + · · ·+ H2,nXn

...

Yn = Hn,1X1 + Hn,2X2 + · · ·+ Hn,nXn

where
Hk,l ∝

(
h2 + ground distancek,l

)−α
2 e(θ) eT (φ).

Potential variables to optimize:

n

positions (which determines distances)

look directions

signaling (TDM/FDM/etc.)
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Assumptions

B: available frequency resources.

Satellite i ’s power spectral density constraints:∫
B
Pi (f ) df ≤ Pmax and Pi (f ) ≤ PSDmax(f ), ∀ f ∈ B.

All transmitters use Gaussian codebooks and spot beamforming;

All receivers treat all interference as independent additive white Gaussian noise.

ws(·): satellite antenna/beam pattern; wg (·): ground station antenna/beam pattern.

The link gain is proportional to d−αws(θs)wg (θg ).

Look directions are upper bounded by γs , γg .

Satellite look 
direction

Ground station 
look direction

𝜃𝑠

𝜃𝑔

𝛾𝑠
2

Satellite 
look 
direction

𝛾𝑔

2

Ground 
station 
look 
direction
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An example with a regular configuration

Interferer Links

Intended Link

Δ

h = altitude

Δ
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Altitude h = 550 km, the serving link SNR is 8 dB.
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Problem and simplification

If one is not limited by the number of satellites and ground stations, what is the highest spectral
efficiency?

If R bits/s/Hz/km2 is achievable, there exists a fixed configuration that achieves R. Without loss of
generality, assume a snapshot with no motions.

It suffices to consider a single narrow subband.

We consider a one-to-one satellite and ground station association. (Is this optimal?)
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Single narrow subband

Link i :

SINRi =
pid
−α
i,i wi,i∑

j 6=i pjd
−α
j,i wj,i + σ2

.

The spectral efficiency:

R =
1

4πr2
e

n∑
i=1

log2(1 + SINRi ).
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“Flat-Earth” approximation
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Suppose the field-of-view of the each ground station is flat.

Suppose all ground stations are on one plane.

Association minimizes the total distance.

Associated satellite and ground station look toward each other.
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Regular configuration

Interferer Links

Intended Link

Δ

h = altitude

Δ

Assumption: The serving satellite is directly above.

Proposition

For the regular configuration, to maximize the spectral
efficiency, pi must be equal to psdmax for any i .
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Random vs regular configuration
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Single-channel.

Serving-link SNR is 8 dB, satellite beamwidth = 2◦, ground station beamwidth = 5◦.
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Subband allocation
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Consider hexagonal frequency re-use pattern.
Given a constellation, assign each satellite frequency bands included in its Voronoi region.
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Performance with subband allocation
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psdmaxh
−α/(|B|σ2) = 18 dB,

Pmax = psdmax/10,

300 subbands,

Satellite beam-width = 2◦,

Ground-station beam-width = 5◦.
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Look direction optimization

Arranging the associations (look directions) slightly may reduce interference significantly.

A small change of look direction does not significantly change the direct link gain.
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Shuffling

21 3 4

1 2 3 4

65 7 8
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One round of shuffling;

21 3 4

1 2 3 4

65 7 8

5 6 7 8

Two rounds of shuffling.

Adding a shuffling round increases the minimum distance from the serving satellites to neighboring ground
stations.
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Upper bound for the regular configuration

Ground station

Satellites

𝛾𝑔

2

𝛾𝑠
2

If X satellites are in the beam-region of a ground terminal,
the spectral efficiency is upper bounded by

2

∆2
√

3
log2

(
1 +

psdmaxh
−α

X Imin + σ2

)
,

where

Imin , psdmax

(
h2 + h2 tan2(γg/2)

)−α
2 ws(γs)wg (γg ).
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Single-channel.

Serving link gain is 10 dB.

The satellite and the ground station
beamwidths are chosen as (5◦, 10◦).

We set beam-region widths as
γs = γg = 40◦.

For any given ∆, optimal shuffling
parameters are numerically found.
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Conclusion

The current density of satellites is well below the interference-limited regime.

Subband allocation and judicious association can lead to a substantial improvement in spectral
efficiency.

Open question: Is regular configuration near optimal?

Open question: What is the capacity? the optimal satellite density?

Most results presented here have been reported in Ozturk, Guo, Berry & Honig, “Spectral Efficiency
of Low Earth Orbit Satellite Constellations.” Under review. Can share upon email request.

Other related work from my group and collaborators:
- Hazlett, Guo & Honig, “From ‘openskies’ to traffic jams in 12 GHz: A short history of satellite radio
spectrum,” Journal of Law & Innovation, vol. 6, no. 1, pp. 6694, 2023.

- Berry, Bustamante, Guo, Hazlett, Honig, Lohmeyer, Murtazashvili, Palo & Weiss, “Spectrum rights
in outer space: Interference management for low Earth orbit (LEO) broadband constellations,”
Journal of Information Policy, under revision. Available at SSRN 4178793, 2024.

- Ozturk, Berry, Guo, Honig & Lind, “Reducing Satellite Interference to Radio Telescopes Using
Beacons.” IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), 2024.
Also available at arXiv:2312.12692.

- Mollakhani & Guo, “Fault-Tolerant Spectrum Usage Consensus for Low-Earth-Orbit Satellite
Constellations.” Under review. An earlier versionis available as arXiv preprint arXiv:2312.05213.
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