
Message Identification for Future
Communication Systems
Christian Deppe
Algorithmic Structures for Uncoordinated Communications and Statistical
Inference in Exceedingly Large Spaces, BIRS, March 10-15, 2024



Overview

1. Shannon’s Channel Coding

2. Deterministic Identification

3. Randomized Identification

4. Gaussian Channels

5. Feedback as a Resource for Randomness

6. Further Research

Algorithmic Structures for Uncoordinated Communications and Statistical Inference in Exceedingly Large Spaces, BIRS, March 10-15, 2024 Page 2
Message Identification for Future Communication Systems



Shannon’s Channel Coding

m
Alice

-Encoder Noisy Channel Wn
Decoder

Bob
- m̂

xn ∈ X n yn ∈ Yn
- -

Alice has to transmit a message m ∈ M = {1, 2, . . . ,M} to Bob
Alice uses a block code X n = {0, 1, . . . , q − 1}n

W = {W(y|x) : x ∈ X , y ∈ Y} is a stochastic matrix.
The probability for a sequence y ∈ Yn to be received if xn ∈ X n:

Wn(yn|xn) =
n

∏
t=1

W(yt|xt)

Bob receives a word in Yn.

Goal: Bob has to decode the correct message with a small decoding error
=⇒ Finding the correct answer to: “What was Alice’s message?”
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Shannon’s Channel Coding

Definition
A (deterministic) (n,M,λ) code for W is a set of pairs {(ui,Di) : i ∈ M}

ui ∈ X n,Di ⊂ Yn for all i ∈ M (1)

Di ∩Dj = ∅ for all 1 ≤ i, j ≤ n, i 6= j (2)

Wn (Di|ui) ≥ 1 − λ∀i ∈ M (3)

Bob decided that message i was send if he receive a word in Di.
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Which triples (n,M,λ) are possible?

We require, that a certain number M(n) of messages can be transmitted
over the channel. It is reasonable to set them exponential in n(
M(n) = eR·n) , since in the noiseless case (w(y|x) = 0 for y 6= x)
|X |n messages are possible. R is denoted as the rate of the code. Let
λ(R, n) be the smallest error probability for (n, eRn) codes and define
the largest error exponent as E(R) = lim

n→∞
1
n log λ(R, n).

We require that λ ∈ (0, 1) is fixed. Let M(n,λ) denote the maximum
number of messages that can be transmitted over the channel for given
word length n and probability of error λ.
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Shannon’s Channel Coding

In his Fundamental Theorem Shannon proved that M(n,λ) grows
exponentially in n. More exactly, he proved that

lim inf
n→∞

logM(n,λ)

n

exists and does not depend on λ ∈ (0, 1). Shannon defined this limit as
the capacity of the channel.
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Transmission and local randomness

Definition
A randomized (n,M,λ) for a DMC W transmission code is a family of
pairs

{(Qi,Di) |i = 1, . . . ,M} with

Qi ∈ Pr (X n) , Di ⊂ Yn∀1 = 1, · · · ,M (4)

Di ∩ Dj = ∅∀i 6= j (5)

∑
xn∈X n

Qi(xn)Wn (Di|xn) ≥ 1 − λ∀i = 1, . . . ,M (6)

Lemma
Let W be a DMC. A deterministic (n,M,λ) transmission code for W
exists if and only if a randomised (n,M,λ) transmission code exists.
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Post-Shannon: Identification (ID)

i Enc noisy channel Dec Is i′ sent or not?

Alice Bob

hypothesis testing problem

Ahlswede/Dueck Picture 19891

xn ∈ X n yn ∈ Yn

1R. Ahlswede and G. Dueck, "Identification via channels," in IEEE Transactions on Information Theory, vol. 35, no. 1, pp. 15-29,
Jan. 1989, doi: 10.1109/18.42172.
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Complexity of Communication and Identification

Model:

Alice chooses i ∈ {1, 2, . . . , 2m}.

Bob chooses j ∈ {1, 2, . . . , 2m}.

Goal: Bob want to calculate f(i, j) with small error.

Alice and Bob are connected via a channel.

In message identification one consider:

f = (i, j)
{

1 i = j
0 i 6= j
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Deterministic Identification (DI) over DMCs

Definition
An (M, n,λ1,λ2)-DI code for DMC W is a system {(ui,Di)}i∈[1:L(n,R)]
subject to

1. Code size: M = 2nR

2. Code-word: ui ∈ X n, decoding regions: Di ⊂ Yn

3. Input constraint: n−1 ∑n
t=1 φ(ui,t) ≤ A with φ : X → [0,∞)

4. Error requirement type I: Wn(Di|ui) > 1 − λ1

5. Error requirement type II: Wn(Di|uj) <
i 6=j

λ2
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DI Capacity of DMC

Theorem
Let W be a DMC with distinct rows in channel matrix. Then the DI
capacity with exponential code size and under input constraint is given by

CDI(W) = max
pX : E{φ(X)}≤A

H(X)

M. J. Salariseddigh, U. Pereg, H. Boche, and C. Deppe, "Deterministic identification over channels with power constraints," IEEE Int’l

Conf. Commun. (ICC), 2021
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Deterministic Identification
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Randomized Identification 1

Originally introduced by Ahlswede and Dueck (1989)

Capacity was established with randomness at encoder

1R. Ahlswede and G. Dueck, "Identification via Channels", IEEE Trans. Inf. Theory, 1989
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Randomized Identification (ID)-Code

Randomized ID-code
A randomized (n,N,λ1,λ2) ID-code for a discrete memoryless channel
(DMC) W is a family of pairs {(Qi,Di)|i = 1, . . . ,N} with
λ1,λ2 ≤ λ < 1

2 and ∀i ∈ {1, . . . ,N}:

Qi ∈ P(X n), Di ⊆ Yn

∑xn∈X n Qi(xn)Wn(Dc
i |xn) ≤ λ1 ⇐= channel noise

∑xn∈X n Qj(xn)Wn(Di|xn) ≤ λ2 ⇐= ID-code

⇒ Randomization is crucial to establish capacity!
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ID Coding Theorem 1 2

Theorem
Let W be a finite DMC and N(n,λ) the maximal number s.t. an
(n,N,λ1,λ2) ID-code for W exists with λ1,λ2 ≤ λ then:

CID(W) = C(W), ∀λ ∈ (0,
1
2
),

where C(W) denotes the Shannon transmission capacity of W,
CID(W) , limn→∞

1
n log logN(n,λ)

1R. Ahlswede and G. Dueck, "Identification via channels," in IEEE Transactions on Information Theory, vol. 35, no. 1, pp. 15-29,
Jan. 1989

2T. S. Han and S. Verdu, "New results in the theory of identification via channels," in IEEE Transactions on Information Theory,
vol. 38, no. 1, pp. 14-25, Jan. 1992.
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Identification Codes
Identification codes

Verifier-ID

Sender
Noisy

Channel

Random 
Codeword

Verifier

Distorted Random 
Codeword Yes/NoSender-ID

Sender

ID 24
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Identification Codes

Verifier

ID 24

Identification codes

Each ID has set of codewords, one is picked randomly
Codeword sets overlap and don’t have to be convex
Sender and verifier are identical  ID doesn’t require decoding, only encoding

Verifier-ID

Sender
Noisy

Channel

Random 
Codeword

Verifier

Distorted Random 
Codeword Yes/NoSender-ID

Sender

ID 24

Correct ID
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Identification Capacity
Identification capacity

 The number of identifiable entities grows double exponentially in block size,
at the cost of a new kind of error

Transmission:

ID:

Discrete Memoryless Channel (DMC):
N
n
R

number of entities
number of bits
rate (0.0-1.0)
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Identification - Correct Positive
Identification codes: correct positive

Verifier-ID

Sender
Noisy

Channel

Random 
Codeword

Verifier

Distorted Random 
Codeword Yes/NoSender-ID

Verifier

ID 24

Sender

ID 24

Correct ID
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Identification - Correct Negative
Identification codes: correct negative

Verifier-ID

Sender
Noisy

Channel

Random 
Codeword

Verifier

Distorted Random 
Codeword Yes/NoSender-ID

Verifier

ID 58

Sender

ID 24

Correct ID
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Identification - False Negative
Identification errors: type 1 (false negative)

Verifier-ID

Sender
Noisy

Channel

Random 
Codeword

Verifier

Distorted Random 
Codeword Yes/NoSender-ID

ID 24

VerifierSender

ID 24

Type 1 
Error
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Identification - False Positive
Identification errors: type 2 (false positive)

 Hypothesis testing of {maybe, no}

Verifier-ID

Sender
Noisy

Channel

Random 
Codeword

Verifier

Distorted Random 
Codeword Yes/NoSender-ID

Verifier

ID 37

Sender

ID 24

Type 2 
Error

Noiseless
Channel
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Identification - Error Types
Identification error types

Caused by Reduced by Removed by

Type 1 errors Noisy channel Shannon channel coding Shannon channel coding

Type 2 errors Overlapping codeword sets Identification codes -

Verifier

ID 37

Sender

ID 24

Type 2 
Error

Noiseless 
Channel
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Achievability with functions
To send a message i, we prepare a set of coloring functions
{Ti, i = 1, . . . ,N} known by the sender and the receiver

Ti : {1, . . . ,M} −→ {1, . . . , 2l}
: l︸︷︷︸

coloring number

7→ Ti(l)︸︷︷︸
color, depend on f i

1

2

...

l

...

M

1
2
...
j
...

2l

T1

1

2

...

l

...

M

1
2
...
j
...

2l

TN

. . . . . .

T1(1) = TN(1) = 2
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The Gaussian Channel

We consider the AWGN (additive white Gaussian noise) channel.
The signal at the receiver contains, in addition to the useful signal,
additive noise, which represents a realization of a white Gaussian
process.
"Power" constraint: For a codeword (x1, x2, . . . , xk) transmitted
through the channel, we have:

1
n

n

∑
i=1

x2
i ≤ P.
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Transmission Capacity of the Gaussian Channel

The channel capacity for the power-constrained channel is given by:

C(G) = max
{

I(X;Y) : f s.t. E
(
X2) ≤ P

}
=

1
2
log

(
1 +

P
N

)
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RI Coding Theorem 1

Theorem
For the AWGN holds

CID(G) = C(G), ∀λ ∈ (0,
1
2
).

1Labidi, W., Deppe, C., Boche, H. (2020). Secure identification for Gaussian channels and identification for multi-antenna
gaussian channels. arXiv preprint arXiv:2011.06443.
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DI Capacity of the Gaussian Channel

Theorem
The DI capacity of the Gaussian channel G is given by

CDI(G ) = ∞ . (7)
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Proof Sketch (Achievability)

Codebook construction: Choose codewords in spheres such that the
distance is "big enough" and that the power constraint is fullfilled!

√
A −

√
ε

√
ε

Illustration of a sphere packing, where small spheres of radius r0 =
√

ε cover a
bigger sphere of radius r1 =

√
A −

√
ε. The small spheres are disjoint from

each other and have a non-empty intersection with the big sphere.

Algorithmic Structures for Uncoordinated Communications and Statistical Inference in Exceedingly Large Spaces, BIRS, March 10-15, 2024 Page 29
Message Identification for Future Communication Systems



Proof Sketch (Achievability)

Encoding Given a message i ∈ [[2nR]], transmit x̄ = ūi.

Decoding Let δ > 0. To identify whether a message j ∈ M was sent, the
decoder checks whether the channel output y belongs to the following
decoding set,

Dj =

{
ȳ ∈ Rn : ‖ȳ − ūj‖ ≤

√
σ2

Z + δ

}
. (8)
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Coding Scale: Deterministic Identification

L(n,R)

S., Pereg, Boche & Deppe, ICC 2021

CDI(W ,Lexp) = ∞2nR

CDI(W ,Ld-exp) = 022nR
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Coding Scale: Deterministic Identification

L(n,R)

S., Pereg, Boche & Deppe, ICC 2021

CDI(W ,Lexp) = ∞2nR

CDI(W ,Ld-exp) = 022nR

What is the correct scale?
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DI Capacity of the Gaussian Channel

Theorem

The DI capacity of the Gaussian channel G in the 2n log(n)-scale, i.e., for
L(n,R) = 2(n log n)R is bounded by

1
4
≤ CDI(G ,L) ≤ 1 . (9)

Hence, the DI capacity is infinite in the exponential scale and zero in the
double-exponential, i.e.,

CDI(G ,L) =

{
∞ for L(n,R) = 2nR ,

0 for L(n,R) = 22nR
.

(10)
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The Power of Randomness

If we have no direct access to randomness, can we use resources to get
randomness?
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DI with Noiseless Feedback

i Enc Channel Dec Yes/No

i′

Yt

Ahlswede and Dueck considered channels with discrete alphabets

The results is extended to the Gaussian channel

R. Ahlswede and G. Dueck, "Identification in the presence of feedback-a discovery of new capacity formulas," IEEE Trans. Inf.

Theory, 1989 W. Labidi, H. Boche, C. Deppe and M. Wiese, "Identification over the Gaussian Channel in the Presence of Feedback,"

IEEE Int’l Symp. Inf. Theory (ISIT), 2021 [arXiv:2102.01198, 2021]
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DIF Capacity of a DMC

Theorem
Let CDIF(W) and C(W) be the DIF capacity and the Shannon capacity
of the DMC W , respectively. Then the deterministic identification
capacity with feedback is given by

CDIF(W) =

max
x∈X

H (W(·|x)) if C(W) > 0

0 iff W is noiseless or C(W) = 0

Feedback allows a double exponential growth of the identities

Noise can increase the identification feedback capacity

R. Ahlswede and G. Dueck, "Identification in the presence of feedback-a discovery of new capacity formulas," IEEE Trans. Inf.

Theory, 1989
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DIF Over Gaussian Channels: System Model

i Enc + Dec Yes/No

Zt

i′

Xt = f t
i (Y

t−1) Yt

Zt, t = 1, . . . , n iid∼ N
(
0, σ2

)
The channel is denoted by Wσ2
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DIF code for Gaussian channels under average power constraint
A (L(n,R), n,λ1,λ2)-DIF code for Wσ2 with λ1 + λ2 < 1 is a system
{(f i,Di)}i∈[1:L(n,R)] subject to

1. Code size: L(n,R)

2. Feedback strategy: f i = [f1
i , f2

i . . . , fn
i ] ∈ Fn,

decoding region: Di ⊂ Yn

3. ∑n
t=1(f

t
i )

2 ≤ n · Ptot, ∀i ∈ {1, . . . ,N}
4. Error requirement type I: Wn(Di|ui) > 1 − λ1

5. Error requirement type II: Wn(Di|uj) <
i 6=j

λ2

Fn is set of all encoding functions fi, where f1
i ∈ X and f t

i : Y t−1 → X
for t > 1

Algorithmic Structures for Uncoordinated Communications and Statistical Inference in Exceedingly Large Spaces, BIRS, March 10-15, 2024 Page 37
Message Identification for Future Communication Systems



DIF Capacity of Gaussian Channel

Theorem
Let λ ∈ (0, 1), σ2 ≥ 0 and Ptot > 0. Then for all R > 0, there exists a
blocklength n0 such that for every n ≥ n0 there exists a deterministic
identification feedback code (L(n,R), n,λ1,λ2) for Wσ2 of blocklength n
with L(n,R) = 22nR

identities and with λ1,λ2 ≤ λ, i.e.,

CDIF(σ
2,Ptot) = +∞

Change the scaling? Choose higher scaling?
Without feedback, code size growth ∼ 2(n log n)R

W. Labidi, H. Boche, C. Deppe and M. Wiese, "Identification over the Gaussian Channel in the Presence of Feedback," IEEE Int’l

Symp. Inf. Theory (ISIT), 2021 [arXiv:2102.01198, 2021] M. J. Salariseddigh, U. Pereg, H. Boche, and C. Deppe, "Deterministic

identification over channels with power constraints," IEEE Int’l Conf. Commun. (ICC), 2021 [arXiv:2010.04239, 2021]
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Infinite DIF Capacity regardless of the Scaling

Theorem
Let λ ∈ (0, 1), σ2 ≥ 0 and Ptot > 0. Then there exists a blocklength ns
such that for every positive integer L(n,R) and every n ≥ ns there exists a
deterministic identification feedback code (L(n,R), n,λ1,λ2) for Wσ2 of
blocklength n with L(n,R) identities and with λ1,λ2 ≤ λ

W. Labidi, H. Boche, C. Deppe and M. Wiese, "Identification over the Gaussian Channel in the Presence of Feedback," IEEE Int’l

Symp. Inf. Theory (ISIT), 2021 [arXiv:2102.01198, 2021]
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Proof Sketch (σ2 > 0)
1. To send a message i, we prepare a set of coloring functions

{Fi, i = 1, . . . ,L(n,R)} known by the sender and the receiver

Fi : {1, . . . , |L|} −→ {1, . . . ,M}
: l︸︷︷︸

coloring

7→ Fi(l)︸︷︷︸
color

1

2

...

l

...

|L|

1
2
...
j
...

M
F1

1

2

...

l

...

|L|

1
2
...
j
...

M
FL(n,R)

. . . . . .
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Proof Sketch

i Enc + Dec

k

x∗ = 0

i′

Z

Y

CR: Ỹ = k(Y)

uFi(k(y))

Yes/No

2. We send one symbol x∗ = 0 over the forward channel

3. We generate the RV Ỹ = k(Y) ∼ Unif(L), |L| determines the growth
of L(n,R)

4. C = {(uj,Dj), j = 1, . . . ,M} is an (m,M, 2−mδ) transmission code,
we send uFi(k(y)), k(y) ∈ L =⇒ (n,L(n,R),λ1,λ2) DIF code with
n = 1 + m

5. If Fi(k(y)) = Fi′(k(y)), then i = i′
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22nR
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222. . .2
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I did not talk about ......

K-Identification
Construction of RI-Codes
Construction of DI-Codes
Joint Identification and Sensing
Molecular Comunication and Identification
Quantum Communication and Identification
Source Identification
PUFs and Identification
Function Compression and Identification
Security and Identification
Covert Communication and Identification
Common Randomness Capacity and Identification
Resolvability and Identification
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Thank you to Coauthors working on Identification
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