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Formal Problem Definition
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• ! = {1,2, … ,!}: set of potentially active users (e.g., ! = 2!")
• * = +#, +", … , +$ ~- [&]

$ : set of . recovered users
• . ≪ !, assumed to be constant (e.g., . = 100)

1: [!]. → 0,1 ( 5): 0,1 ( → {ACK, NACK}

ACK encoder User :’s ACK decoder

ACK message length
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Error Types
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False positives (false alarms)

!!" =
1
$%
#$%

&
ℙ '# ( ) = ACK - ∉ )

False negatives (missed detections)

!!' =
1
$%
#$%

&
ℙ '# ( ) = NACK - ∈ )
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Error-free Encoding
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There are &
$ ways to pick the . recovered users, so we need

;*++,+-.+**∗ = log"
!
. [bits]

≥ K log"
!
. [bits]

D.0 = D.1 = 0
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Error-free Encoding
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Note that ;*++,+-.+**∗ = log" &
$ ≤ K log" &2

$  bits
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3!",!$∗ ≥ 5 log&
1

:!" + 5<
− 5 log&

>
1 − :!$

− :'(5 log&
1 − :!$

:!$ :!" + 5<
− log& 5 [bits]

Encoding with Errors
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D.0 > 0, D.1 ≥ 0

[$]

) (TP) (FP)

3
Each ACK message G can be used for 
several sets of recovered users *

(FN) (TN)

R. Pagh and F. F. Rodler, “Lossy dictionaries,” in Eur. Symp. Algorithms. Springer, 2001, pp. 300–311 
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Does not depend on ! as ! → ∞ for fixed .

!!",!$∗ ≥ # log&
1

(!" + #*
− # log&

,
1 − (!$

− (!$# log&
1 − (!$

(!$ (!" + #*
− log&#

False positives give the highest gains

Encoding with Errors

10
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Encoding with Errors, !!" = 0
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D.0 > 0, D.1 = 0

;.0∗ = . log"
1
D.0

± J(log log!)

For large !:

L. Carter, et al., “Exact and approximate membership testers,” in Proc. Tenth annu. ACM Symp. Theory Comp. (STOC). ACM Press, 1978.
M. Dietzfelbinger and R. Pagh, “Succinct data structures for retrieval and approximate membership,” in Int. Colloq. Automata, Languages, 
and Program. Springer, 2008, pp. 385–396.
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Bloom Filter
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

) = {5%, 5(, 5)}
Encoding:

8

BIRS, March 2024



Bloom Filter
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

) = {5%, 5(, 5)}
ℎ)(G))

ℎ&(G*)

Encoding:

8 1 1
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Bloom Filter

13

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

) = {5%, 5(, 5)}
ℎ)(G))

ℎ&(G&)
ℎ)(G))

ℎ&(G*)

Encoding:

8 1 1 1 1
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Bloom Filter
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

) = {5%, 5(, 5)}
ℎ)(G))

ℎ&(G))ℎ&(G&)
ℎ)(G))

ℎ&(G*)
ℎ)(G*)

Encoding:

8 1 1 1 1 1
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Bloom Filter

13

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

) = {5%, 5(, 5)}
ℎ)(G))

ℎ&(G))ℎ&(G&)
ℎ)(G))

ℎ&(G*)
ℎ)(G*)

Encoding:

Decoding:

5* !-! ." & !-# ." = 1 ⇒ ACK
!-! ." & !-# ." = 0 ⇒ NACK

ℎ&(G+)ℎ)(G+)

8 1 1 1 1 1

BIRS, March 2024



Bloom Filter Analysis
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After optimizing the number of hash functions and the message length it can
be shown that

A factor log" M ≈ 1.44 larger than the asymptotic bound

;E. = . log"(M) log"
1
D.0

A. Broder and M. Mitzenmacher, “Network applications of bloom filters: A survey,” Internet Math., vol. 1, no. 4, p. 
485–509, Jan 2004.
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M. Dietzfelbinger and R. Pagh, “Succinct data structures for retrieval and approximate membership,” in Int. Colloq. 
Automata, Languages, and Program. Springer, 2008, pp. 385–396.
E. Porat, “An optimal bloom filter replacement based on matrix solving,” in Int. Comput. Sci. Symp. Russia. 
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Linear Equations

15

Consider the set of # linear equations constructed using hashes of the user ids

All hash functions are
! → GF(2F)

) = {5%, 5(, 5)}

unknown vector

BIRS, March 2024

ℎ#(#)(+#) ℎ#" (+#) ℎ#! (+#)
ℎ#(#)(+") ℎ#" (+") ℎ#! (+")
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All hash functions are
! → GF(2F)
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Linear Equations
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Decoding:
ℎ'' .( /' + ℎ'& .( /& + ℎ') .( /) = ℎ& .( ⇒ ACK

All hash functions are
! → GF(2J)
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Linear Equations
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All we need to send is T# T" T! K
(assuming the solution exists)

Decoding:
ℎ'' .( /' + ℎ'& .( /& + ℎ') .( /) = ℎ& .( ⇒ ACK

All hash functions are
! → GF(2J)

!" bits
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All we need to send is T# T" T! K
(assuming the solution exists)

Decoding:
ℎ'' .( /' + ℎ'& .( /& + ℎ') .( /) = ℎ& .( ⇒ ACK

All hash functions are
! → GF(2J)

!" bits

(!" = 2*+ ⇔ 7 = log&
1
(!"
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Linear Equations
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All we need to send is T# T" T! K
(assuming the solution exists)

Decoding:
ℎ'' 0( 1' + ℎ'& 0( 1& + ℎ') 0( 1) = ℎ& 0( ⇒ ACK

All hash functions are
! → GF(2J)

+, bits

(!" = 2*+ ⇔ 9 = log&
1
(!"

Recall the bound:

!!"∗ = # log&
1
(!"

± ;(log log*)

BIRS, March 2024

ℎ#(#)(+#) ℎ#" (+#) ℎ#! (+#)
ℎ#(#)(+") ℎ#" (+") ℎ#! (+")
ℎ#(#)(+!) ℎ#" (+!) ℎ#! (+!)

T#
T"
T!

=
ℎ"(+#)
ℎ"(+")
ℎ"(+!)



Comparison
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Fig. 1: Message length, B, required to provide acknowledgment feedback for N = 232 and

"fn = 0 with "fp = 0.01 and "fp = 0.0001.

Taking the logarithm and bounding the binomial coefficients gives the following upper bound

on the required feedback message length

B⇤
fp  log2

✓
N

K

◆
� log2

✓
bN"fpc
K

◆

+ log2

✓
1 + ln

✓
bN"fpc
K

◆◆ (13)

 K log2 (e/"fp) + log2

✓
1 +K ln

✓
N"fp
K

◆◆
. (14)

Note that this also serves as an upper bound for the case with "fn > 0. By comparing (14) to the

lower bound in (11), it can be seen that the bounds are tight within an additive term O(logN)

as N ! 1, i.e., for sufficiently large N ,

B⇤
fp = K log2(1/"fp)±O(logN), (15)

which is lower than the error-free scheme in Eq. (8) when "fp � K/N . To illustrate the potential

gain of introducing a small fraction of false positives, suppose N = 232 and K = 100. Encoding

the acknowledgment in an error-free manner requires approximately B = log2
�
232

100

�
⇡ 2675

bits, while only B = 100 log2(100) ⇡ 664 bits are required if we can tolerate "fp = 0.01, and

B = 100 log2(10000) ⇡ 1329 bits for "fp = 0.0001. The required feedback message lengths for

! = 2!"
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Downlink Erasure Channel
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1: [!]. → 0,1 ( 5): 0,1 ( ∪ e → {ACK, NACK}I ∈ 0,1 )
I

e

ACK encoder User :’s channel User :’s decoder

Erasure probability assumed to be equal to the outage probability

For evaluation we will assume:
- Poisson arrivals
- Fixed-length coding
- Rayleigh fading
- 2048 symbols
- 64 tx antennas (but no precoding)
BIRS, March 2024



ARQ Model
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uplink success (1 − :*+) uplink fail (:*+)

feedback 
decoding 
success

done
(success)

retransmit

done
(failure)

retransmit retransmit

feedback 
decoding fail

feedback true 
negative

feedback 
decoding 
success

feedback false 
positive

feedback 
decoding fail

Reliable feedback is a trade-off between reliable 
transmission and false positive probability

:,+1 − :,+ 1 − :,+ :,+

1 − :!" :!"
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Fixed-length Feedback with Fading
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Fig. 6: Failure probability for the concatenation based encoding compared to the error-free (EF)

bound (Eq. (7)), the linear equations (LE) scheme (Eq. (24)), and the lower bound (LB, Eq. (15))

when the acknowledgment is transmitted over a Rayleigh fading channel with c = 2048 symbols

and 64 transmitter antennas. K is Poisson distributed with mean �, "ul = 0.1 and L = 5.

Diamond and triangle markers are obtained by simulation of the concatenation and LE schemes,

respectively.

C. Source/Channel Coding Trade-off

We finish the section by studying the trade-off between the number of bits used to encode the

acknowledgments and the transmission rate. We assume that K is Poisson distributed with arrival

rate � and the uplink reliability is "ul = 0.1. For the downlink, we pick "dl using Eq. (46) for the

case in which the BS has 64 antennas, there are L = 5 transmission rounds, and c = 2048 channel

symbols are available for the feedback, such that the transmission rate is B/2048 bits/symbol.

Assuming a quasi-static flat-fading Rayleigh channel with average SNR SNR, the instantaneous

SNR at the user, �, is Gamma distributed with shape and scale parameters equal to 64 and

SNR/64, respectively. We consider four encoding methods, namely identifier concatenation, the

error-free (EF) method from Eq. (7), the scheme based on linear equations (LE) presented in

Section IV-D, and the asymptotically optimal scheme from Eq. (15). For each value of � and

each encoding scheme, we optimize B so that Pr(fail) is minimized when averaged over the

instantaneous arrivals given �. Thus, the transmission rate remains fixed for a given �. In the

concatenation and error-free schemes, we assume that each identifier requires 32 bits, and when

• M = 5
• :*+ = 0.1
• 5 ∼ Poisson S  (iid in each 

retransmission)
• Rayleigh fading
• 2048 symbols
• 64 tx antennas
• Markers indicate simulations

• More efficient coding allows for lower transmission rate

• Significantly higher reliability despite false positives

Not in green 
state within M 
transmissions
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Resolving Failures
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• Some users erronously believe they succeeded when they fail

• False positives exist in all ARQ systems (CRC failures, etc.)
• Example: 16-bit CRC gives D.0 ≈ 1.5 ⋅ 10-T
• ACK messages are usually designed to have D.0 ≪ D.1, but we

do the opposite

• Need to be resolved at higher layers, e.g., using sequence numbers

BIRS, March 2024



§ Acknowledgment feedback in massive random access is nontrivial

§ Identifier concatenation is highly sub-optimal

§ Allowing for false positive errors significantly reduces the number of bits 

required

§ This leads to significant ARQ reliability gains despite false positives

Conclusions

23BIRS, March 2024



A. E. Kalør, R. Kotaba and P. Popovski, "Common Message 
Acknowledgments: Massive ARQ Protocols for Wireless 
Access," in IEEE Transactions on Communications, vol. 70, no. 8, 
pp. 5258-5270, Aug. 2022.

Thank You


