Parabolically induced representations of G_2 distinguished by SO_4 ANTD. BIRS

Sarah Dijols, UBC

24th of March 2024

Let G be a connected reductive group over a p-adic field F of characteristic zero $(\mathbb{Q}_p \text{ or finite extension of } \mathbb{Q}_p)$, and let R(G) be the category of complex representations $(\pi; V)$ such that $\{g \in G : \pi(g)v = v\}$ is open in G for all $v \in V$.

Example ${\mathcal G}={\rm GL}_n,\; {\mathcal G}={\rm SO}_{2n+1}, {\rm Sp}_{2n}$, ${\mathcal G}={\mathcal G}_2$

Definition (Parabolically induced representation) $P = M \ltimes U, (\sigma, V)$ a smooth representation of M.

$$\operatorname{Ind}_P^G(\sigma) := \{f: G \to V, f(pg) = (\delta_P^{1/2}\sigma)(p)f(g), p \in P, g \in G\}$$

G acts on these functions by right-translation: $(R(g)f)(x) = f(xg), g, x \in G$

Let G be a reductive group over a p-adic field F, and H a closed subgroup of G. Take a smooth complex-valued representation π . **Question**: What are the representations π of G and characters χ of H such that $\operatorname{Hom}_{H}(\pi|_{H}, \chi) \neq 0$? Let G be a reductive group over a p-adic field F, and H a closed subgroup of G. Take a smooth complex-valued representation π .

Question: What are the representations π of G and characters χ of H such that Hom_H($\pi|_H, \chi$) $\neq 0$? When does there exist ℓ such that $\ell(\pi(h)v) = \chi(h)\ell(v) \quad \forall v \in \pi, h \in H$? Example: $\chi = \mathbf{1}_H$. Let G be a reductive group over a p-adic field F, and H a closed subgroup of G. Take a smooth complex-valued representation π .

Question: What are the representations π of G and characters χ of H such that Hom_H($\pi|_H, \chi$) $\neq 0$? When does there exist ℓ such that $\ell(\pi(h)v) = \chi(h)\ell(v) \quad \forall v \in \pi, h \in H$? **Example**: $\chi = \mathbf{1}_H$.

Case of interest: θ an involution G, $H = G^{\theta}$.

Why bother?:

Local motivation:

$$L^2(Hackslash G) = \int_{\hat{G}}^\oplus \pi \mu(\pi)$$

This is a unitary representation of G, and the Plancherel measure μ is supported on the class of *H*-distinguished representations.

Why bother?:

Global motivation:

Let ϕ be an automorphic form on $G(\mathbb{A}_F)$, with F a number field. Then we are interested in understanding if

$$\int_{ZH(F)\backslash H(\mathbb{A}_F)}\phi(h)\chi(h)dh\neq 0$$

Relative Trace formula

$$B = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} \ltimes \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \quad a, d \in F^{\times}, b \in F$$

$$B = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} \ltimes \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \quad a, d \in F^{\times}, b \in F$$
$$\mathsf{nd}_B^G(\chi) := \{f : GL_2 \to V, f(bg) = (\delta_B^{1/2}\chi)(b)f(g), b \in B, g \in GL_2\}$$

Question: For which χ is $Ind_B^{GL_2}(\chi)$ a *T*-distinguished representation?

$$B = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} \ltimes \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \quad a, d \in F^{\times}, b \in F$$
$$\operatorname{Ind}_{B}^{G}(\chi) := \{f : GL_{2} \to V, f(bg) = (\delta_{B}^{1/2}\chi)(b)f(g), b \in B, g \in GL_{2}\}$$
Question: For which χ is $\operatorname{Ind}_{B}^{GL_{2}}(\chi)$ a *T*-distinguished representation?

Let $Z \subset T$ be the center of GL_2 . Let us look at: R(z).f(g) =

$$B = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} \ltimes \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \quad a, d \in F^{\times}, b \in F$$

 $\operatorname{Ind}_B^G(\chi) := \{f: \operatorname{GL}_2 \to V, f(bg) = (\delta_B^{1/2}\chi)(b)f(g), b \in B, g \in \operatorname{GL}_2\}$

Question: For which χ is $Ind_B^{GL_2}(\chi)$ a *T*-distinguished representation?

Let $Z \subset T$ be the center of GL_2 . Let us look at: $R(z).f(g) = f(gz) = (\delta_B^{1/2}\chi)(z)f(g)$ Take $\ell \in Hom_T(Ind_B^{GL_2}(\chi), 1)$. Then $\ell(R(z).f) = \ell(\chi(z).f) = \chi(z)\ell(f) = \ell(f)$, so we need

$$\chi|_Z = \mathbf{1}$$

Necessary condition: The representation $Ind_B^{GL_2}(\chi)$ has a trivial central character.

Sufficient condition

We need to look at the double coset $B \setminus GL_2/T$. Using Bruhat decomposition, we find:

$$GL_2 = B \sqcup B \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \sqcup B \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} T$$

 $B \setminus GL_2/T = \{B = \{g_{21} = 0\}; Bw = \{g_{22} = 0\}; B\eta T = \{g_{21}g_{22} \neq 0\}\}$

Since $B\eta T$ is open, we can look at the *T*-invariant space

$$V = \left\{ f \in \mathsf{Ind}_B^{\mathit{GL}_2}(\chi) | \mathsf{Supp}(f) \in B\eta T
ight\}$$

Sufficient condition

We need to look at the double coset $B \setminus GL_2/T$. Using Bruhat decomposition, we find:

$$GL_2 = B \sqcup B \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \sqcup B \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} T$$

$$B \setminus GL_2/T = \{B = \{g_{21} = 0\}; Bw = \{g_{22} = 0\}; B\eta T = \{g_{21}g_{22} \neq 0\}\}$$

Since $B\eta T$ is open, we can look at the *T*-invariant space

$$V = \left\{ f \in \mathsf{Ind}_B^{\mathit{GL}_2}(\chi) | \mathsf{Supp}(f) \in B\eta T
ight\}$$

We then get the filtration: $0 \subseteq V \subseteq \operatorname{Ind}_{B}^{GL_{2}}(\chi)|_{T}$. If $\ell \in \operatorname{Hom}_{T}(\operatorname{Ind}_{B}^{GL_{2}}(\chi), 1)$ then either $\ell|_{V} \neq 0$ (in which case, $\operatorname{Hom}_{T}(V, 1) \neq 0$) or ℓ is a non-zero element of $\operatorname{Hom}_{T}(\operatorname{Ind}_{B}^{GL_{2}}(\chi)/V, 1)$.

Method: The Geometric Lemma

Remark: This method only allows to study $\pi \cong \operatorname{Ind}_{P}^{G}(\sigma)$

Method: The Geometric Lemma

Remark: This method only allows to study $\pi \cong \operatorname{Ind}_{P}^{G}(\sigma)$

Theorem, Helminck-Wang: The double cosets $P \setminus G/H$ is finite (also true over the reals).

Remark: This method only allows to study $\pi \cong \operatorname{Ind}_{P}^{G}(\sigma)$

Theorem, Helminck-Wang: The double cosets $P \setminus G/H$ is finite (also true over the reals).

Lemma, Bernstein-Zelevinsky There exists an order $\{P\eta_i H\}_{i=1}^N$ on the double cosets $P \setminus G/H$ such that $\mathcal{O}_i = \bigcup_{i=1}^i P\eta_i H$, is open for any $i = 1, \dots, N$

Remark: This method only allows to study $\pi \cong \operatorname{Ind}_{P}^{G}(\sigma)$

Theorem, Helminck-Wang: The double cosets $P \setminus G/H$ is finite (also true over the reals).

Lemma, Bernstein-Zelevinsky There exists an order $\{P\eta_i H\}_{i=1}^N$ on the double cosets $P \setminus G/H$ such that $\mathcal{O}_i = \bigcup_{j=1}^i P\eta_j H$, is open for any i = 1, ..., N $V_i = \{f \in \operatorname{Ind}_P^G(\sigma) : \operatorname{Supp}(f) \subseteq \mathcal{O}_i\}$ then $0 \subseteq V_0 \subseteq V_1 \subseteq ... \subseteq V_N = \operatorname{Ind}_P^G(\sigma)|_H$ is a filtration of $\operatorname{Ind}_P^G(\sigma)|_H$ **Remark**: This method only allows to study $\pi \cong \operatorname{Ind}_{P}^{G}(\sigma)$

Theorem, Helminck-Wang: The double cosets $P \setminus G/H$ is finite (also true over the reals).

Lemma, Bernstein-Zelevinsky There exists an order $\{P\eta_i H\}_{i=1}^N$ on the double cosets $P \setminus G/H$ such that $\mathcal{O}_i = \bigcup_{j=1}^i P\eta_j H$, is open for any i = 1, ..., N $V_i = \{f \in \operatorname{Ind}_P^G(\sigma) : \operatorname{Supp}(f) \subseteq \mathcal{O}_i\}$ then $0 \subseteq V_0 \subseteq V_1 \subseteq ... \subseteq V_N = \operatorname{Ind}_P^G(\sigma)|_H$ is a filtration of $\operatorname{Ind}_P^G(\sigma)|_H$

If $\operatorname{Ind}_{P}^{G}(\sigma)$ is *H*-distinguished, then there exists *i* such that $\operatorname{Hom}_{H}(V_{i}/V_{i-1}; \mathbf{1}) \neq 0$. Indeed, if $\ell \in \operatorname{Hom}_{H}(\operatorname{Ind}_{P}^{G}(\sigma); \mathbf{1}) \neq 0$ then there exists *i* minimal such that $\ell|_{V_{i}} \neq 0$ defines a non-zero element of $\operatorname{Hom}_{H}(V_{i}/V_{i-1}; \mathbf{1})$.

$$\operatorname{Hom}_{H}(V_{i}/V_{i-1}; \mathbf{1}) = \operatorname{Hom}_{P_{i}}(\delta_{P_{i}}^{-1}\delta_{P}^{1/2}\sigma, \mathbf{1})$$
where $P_{i} = \eta_{i}H\eta_{i}^{-1} \cap P$.

$$\operatorname{Hom}_{H}(V_{i}/V_{i-1}; \mathbf{1}) = \operatorname{Hom}_{P_{i}}(\delta_{P_{i}}^{-1}\delta_{P}^{1/2}\sigma, \mathbf{1})$$
where $P_{i} = \eta_{i}H\eta_{i}^{-1} \cap P$.

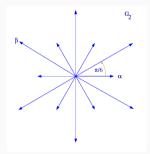
Set
$$x_i=\eta_i heta(\eta_i)^{-1}$$
, $heta_x(g)=x heta(g)x^{-1}$ and $M_x=(M\cap heta_x(M))^{ heta_x}$.

Proposition (Closed orbit, Offen, 2017) Let $P = M \rtimes U$ be a standard parabolic subgroup of G and σ a smooth representation of M. Suppose that x is M-admissible, and $\theta_x(P) = P$. If σ is $(M_x, \delta_{P_x} \delta_P^{-1/2} \chi^{\eta^{-1}})$ -distinguished then $\operatorname{Ind}_P^G(\sigma)$ is (H, χ) -distinguished. What is $\mathrm{G}_2?$

 $k, \mathbb{K}, \mathbb{B}, \mathcal{C}$ Hurwitz algebras of dimension 1,2,4,8 (quaternions, octonions over k). G₂ is the group of automorphisms of the Cayley algebra. We embed G₂ into GL₈ using the action of the root subgroups/the torus of G₂ on the octonions.

The case of (G_2, SO_4)

In this talk, we will denote $G_2 = G_2(F)$, $SO_4 = SO_4(F)$...etc Our goal is to determine for which σ , and χ_{SO_4} , $Hom_{SO_4}(I_P^{G_2}(\sigma), \chi_{SO_4}) \neq 0$.



Lemma The quotient G_2/SO_4 is a symmetric space

Proposition (Closed orbit, Offen, 2017) Let $P = M \rtimes U$ be a standard parabolic subgroup of G and σ a smooth representation of M. Suppose that x is M-admissible, and $\theta_x(P) = P$. If σ is $(M_x, \delta_{P_x} \delta_P^{-1/2} \chi^{\eta^{-1}})$ -distinguished then $\operatorname{Ind}_P^G(\sigma)$ is (H, χ) -distinguished. Our main results are the following:

Theorem (Closed orbit, D, 2022) Let χ be a character of $SO_4(F)$. It is a quadratic character of F^{\times} . It can be seen as a character of GL_2 (those are given by $\chi \circ$ det for a quasi-character χ of F^{\times}). Let P_{β} (resp. P_{α}) denote the maximal parabolic corresponding to the root β (resp. α). The parabolic induced representations of G_2 which are (SO_4, χ)-distinguished include the following representations:

- The induction from P_{β} to G_2 of the reducible principal series $I(\chi \delta_{P_{\beta}}^{1/2} |.|^{-1/2} \otimes |.|)$ of GL_2 .
- The induction from P_{α} to G_2 of the reducible principal series $I(\chi \delta_{P_{\alpha}}^{1/2}|.|^{1/2} \otimes \chi \delta_{P_{\alpha}}^{1/2}|.|^{-1/2})$ of GL_2 .
- The induced representation $I_{P_{\beta}}^{G_2}((\chi \circ \det) \delta_{P_{\beta}}^{1/2})$
- The induced representation $I_{P_{\alpha}}^{G_2}((\chi \circ \det)\delta_{P_{\alpha}}^{1/2})$.

A more structural approach

Joint work with Nadir Matringe.

Definition

A quaternion algebra $D = D_{\alpha,\beta}$ over a field F is a 4-dimensional vector space over F, with basis $\{1, i, j, k\}$, given the structure of an algebra with the multiplication rules

$$i^2 = \alpha, \ j^2 = \beta$$

and ij = -ji = k for some α and β in F^{\times} .

A more structural approach

Joint work with Nadir Matringe.

Definition

A quaternion algebra $D = D_{\alpha,\beta}$ over a field F is a 4-dimensional vector space over F, with basis $\{1, i, j, k\}$, given the structure of an algebra with the multiplication rules

$$i^2 = \alpha, \ j^2 = \beta$$

and ij = -ji = k for some α and β in F^{\times} .

Fact 1: A split quaternion algebra $\cong M_2(F)$. We use the **Cayley-Dickson** construction of the split octonions: $\mathbb{O}_p = M_2(F) \oplus M_2(F)$, equipped with the norm $n_{\mathbb{O}_p}((x, y)) = \det(x) - \det(y)$.

A more structural approach

Joint work with Nadir Matringe.

Definition

A quaternion algebra $D = D_{\alpha,\beta}$ over a field F is a 4-dimensional vector space over F, with basis $\{1, i, j, k\}$, given the structure of an algebra with the multiplication rules

$$i^2 = \alpha, \ j^2 = \beta$$

and ij = -ji = k for some α and β in F^{\times} .

Fact 1: A split quaternion algebra $\cong M_2(F)$. We use the **Cayley-Dickson** construction of the split octonions: $\mathbb{O}_p = M_2(F) \oplus M_2(F)$, equipped with the norm $n_{\mathbb{O}_p}((x, y)) = \det(x) - \det(y)$. SO₄ is the subgroup of automorphisms of the octonions that fix a split quaternionic subalgebra!

Our question today: describe structurally $P_{\beta} \setminus G_2 / SO_4$ and $P_{\alpha} \setminus G_2 / SO_4$

Our question today: describe structurally $P_{\beta} \setminus G_2 / SO_4$ and $P_{\alpha} \setminus G_2 / SO_4$

Definition (Nil-subalgebra) A nil-subalgebra is a subspace of \mathbb{O}_p consisting of **trace zero elements with trivial multiplication** (the product of any two elements is zero).

The quotient $P_{\beta} \setminus G_2$ (resp. $P_{\alpha} \setminus G_2$) correspond to the set of nil-subalgebras of dimension 1 (resp. dim 2) of the split octonions \mathbb{O}_p .

Our question today: describe structurally $P_{\beta} \setminus G_2 / SO_4$ and $P_{\alpha} \setminus G_2 / SO_4$

Definition (Nil-subalgebra) A nil-subalgebra is a subspace of \mathbb{O}_p consisting of **trace zero elements with trivial multiplication** (the product of any two elements is zero).

The quotient $P_{\beta} \setminus G_2$ (resp. $P_{\alpha} \setminus G_2$) correspond to the set of nil-subalgebras of dimension 1 (resp. dim 2) of the split octonions \mathbb{O}_p .

Fact 2: SO₄ is the centralizer of the involution ϵ in \mathbb{O}_{ρ} : $\epsilon(a, b) = (a, -b)$.

Fact 3: $SO_4 = SL_{2,s} \times SL_{2,l} / \Delta \mu_2 = PGL2 \times SL_2$ and acts on $M_2(F) \oplus M_2(F)$ by $(g, h)(x, y) = (gxg^{-1}, hgyg^{-1})$.

Any element in a nil-subalgebra of the split octonions has the form: $\gamma(M_0, M)$ for γ in F, with $M_0^2 = -\det(M)I_2$ and $Tr(M_0)M = 0$.

Proof.

Just an application of the 2-nilpotency of such element and using the multiplication law of the octonions

$$(a + \ell b)(c + \ell d) = (ac + \lambda \overline{d}b) + \ell (da + b\overline{c})$$

There are $|F^{\times}/(F^{\times})^2| + 4$ orbits for the action of SO_4 on $P_{\beta} \setminus G_2$.

Proof:

Using the description of the nil-subalgebras of dimension 1 above, let us distinguish three cases where the nil-subalgebra is generated by: (M_0, M) with M = 0 (1), (M_0, M) with $M_0 = 0$ (2), and (M_0, M) with both M_0 and M non-zeros (3).

There are $|F^{\times}/(F^{\times})^2| + 4$ orbits for the action of SO_4 on $P_{\beta} \setminus G_2$.

Proof:

Using the description of the nil-subalgebras of dimension 1 above, let us distinguish three cases where the nil-subalgebra is generated by: (M_0, M) with M = 0 (1), (M_0, M) with $M_0 = 0$ (2), and (M_0, M) with both M_0 and M non-zeros (3).

(1) Since M = 0, we have only the condition $M_0^2 = 0$ (i.e $Tr(M_0)$ is not necessarily 0). Remembering that the PGL_2 -conjugacy classes of $M_2(F)$ are parametrized by Jordan types, and using the fact that M_0 also needs to be **2-nilpotent**, there is only one element: $M_0 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$

(2) We get the equation, det(M) = 0, we have two Jordan types, but as we let SL_2 acts by translation on the left, they are in the same orbit, so once more we are left with the nilpotent conjugacy classes in the set $M_2(F)$ under the action of SL_2 . The nil-lines (1), and (2) constitute the two closed parabolic orbits.

(3) Finally, let us assume both M_0 and M are non-zero. First, we notice that $k(M_0, M)$ with $k \in F$ with both matrices of rank 1, and $k'(M'_0, M')$, $k' \in F$ with M'_0 and M' of rank 2 can not be in the same SO₄-orbit. Actually the first case gives us already two additional orbits 3a). (2) We get the equation, det(M) = 0, we have two Jordan types, but as we let SL_2 acts by translation on the left, they are in the same orbit, so once more we are left with the nilpotent conjugacy classes in the set $M_2(F)$ under the action of SL_2 . The nil-lines (1), and (2) constitute the two closed parabolic orbits.

(3) Finally, let us assume both M_0 and M are non-zero. First, we notice that $k(M_0, M)$ with $k \in F$ with both matrices of rank 1, and $k'(M'_0, M')$, $k' \in F$ with M'_0 and M' of rank 2 can not be in the same SO₄-orbit. Actually the first case gives us already two additional orbits 3a). Let us consider now the second case 3b). We the equation $M_0^2 = -\det(M)l_2$. The minimal polynomial for M_0 is $P(x) = x^2 + \det(M)I$, and it is also the characteristic polynomial, since $\det(M) = \det(M_0)$. As the characteristic and the minimal polynomials are equal, there is only one conjugacy class of matrices M_0 verifying $P(M_0) = 0$.

The minimal polynomial for M_0 is $P(x) = x^2 + \det(M)I$, and it is also the characteristic polynomial, since $\det(M) = \det(M_0)$. As the characteristic and the minimal polynomials are equal, there is only one conjugacy class of matrices M_0 verifying $P(M_0) = 0$.

In particular, multiplying such a matrix by a scalar t would give us the equation $t^2(M_0)^2 = -\lambda I_2$, so the square classes in F (they are four of them) parametrize this set.

Because the four orbits are characterized by the equations $det(M) \neq 0$, $det(M_0) \neq 0$, these parabolic orbits are open.

$$\left\{ \begin{array}{c} \left(0, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}\right) \text{ and } \left(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, 0\right) \text{ closed orbits} \\ \left(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}\right) \text{ and } \left(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\right) \text{ rank one orbits} \\ \left(\begin{pmatrix} 0 & t \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -t \end{pmatrix}\right) \text{ open orbits} \right\}$$

Lemma (Tentative lemma) There are $|F^{\times}/(F^{\times})^2| + 2$ orbits for the action of SO₄ on $P_{\alpha} \setminus G_2$.

Proof:

We look for pairs of nil-lines (N_1, N_2) so that $N_1.N_2 = 0$, and let SO_4 acts diagonally on such pairs. Further, we need to consider the nil-subalgebras, i.e Vect (N_1, N_2) . Let \mathcal{N} be such a 2-dimensional nil-subalgebra, if $\left(0, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}\right)$ belongs to \mathcal{N} , then using the nilpotency equations, and some simplification using the SO_4 -action, we get

$$\mathcal{N} := F.\left(0, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}\right) \oplus F.\left(0, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}\right).$$

If
$$\begin{pmatrix} 0 & t \\ 1 & 0 \end{pmatrix}$$
, $\begin{pmatrix} 1 & 0 \\ 0 & -t \end{pmatrix}$ belongs to \mathcal{N} , let $N_2 := \begin{pmatrix} u = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $v = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$). Using the nilpotency equation, we get

$$(u,v) = \left(\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}, \begin{pmatrix} b/t & a \\ a & 0 \end{pmatrix} \right)$$

Then deal with the case a = 0 and $a \neq 0$ separately. In the first, get one orbit, and in the second, get again $|F^{\times}/(F^{\times})^2|$ of them (open).

Thank you for your attention!