# Parabolically induced representations of $G_{2}$ distinguished 

 by $\mathrm{SO}_{4}$ANTD, BIRS

## Sarah Dijols, UBC

24th of March 2024

Let $G$ be a connected reductive group over a $p$-adic field $F$ of characteristic zero ( $\mathbb{Q}_{p}$ or finite extension of $\mathbb{Q}_{p}$ ), and let $R(G)$ be the category of complex representations $(\pi ; V)$ such that $\{g \in G: \pi(g) v=v\}$ is open in $G$ for all $v \in V$.

## Example

$G=\mathrm{GL}_{n}, G=\mathrm{SO}_{2 n+1}, \mathrm{Sp}_{2 n}, G=G_{2}$

Definition (Parabolically induced representation) $P=M \ltimes U,(\sigma, V)$ a smooth representation of $M$.

$$
\operatorname{Ind}_{P}^{G}(\sigma):=\left\{f: G \rightarrow V, f(p g)=\left(\delta_{P}^{1 / 2} \sigma\right)(p) f(g), p \in P, g \in G\right\}
$$

$G$ acts on these functions by right-translation: $(R(g) f)(x)=f(x g), g, x \in G$

## Distinguished representations

Let $G$ be a reductive group over a p-adic field $F$, and $H$ a closed subgroup of $G$. Take a smooth complex-valued representation $\pi$.
Question: What are the representations $\pi$ of $G$ and characters $\chi$ of $H$ such that $\operatorname{Hom}_{H}\left(\left.\pi\right|_{H}, \chi\right) \neq 0$ ?

## Distinguished representations

Let $G$ be a reductive group over a p-adic field $F$, and $H$ a closed subgroup of $G$. Take a smooth complex-valued representation $\pi$.
Question: What are the representations $\pi$ of $G$ and characters $\chi$ of $H$ such that $\operatorname{Hom}_{H}\left(\left.\pi\right|_{H}, \chi\right) \neq 0$ ? When does there exist $\ell$ such that $\ell(\pi(h) v)=\chi(h) \ell(v) \quad \forall v \in \pi, h \in H$ ? Example: $\chi=1_{H}$.

## Distinguished representations

Let $G$ be a reductive group over a p-adic field $F$, and $H$ a closed subgroup of $G$. Take a smooth complex-valued representation $\pi$.
Question: What are the representations $\pi$ of $G$ and characters $\chi$ of $H$ such that $\operatorname{Hom}_{H}\left(\left.\pi\right|_{H}, \chi\right) \neq 0$ ? When does there exist $\ell$ such that $\ell(\pi(h) v)=\chi(h) \ell(v) \quad \forall v \in \pi, h \in H$ ?
Example: $\chi=1_{H}$.
Case of interest: $\theta$ an involution $G, H=G^{\theta}$.

## Motivations

Why bother?:
Local motivation:

$$
L^{2}(H \backslash G)=\int_{\hat{G}}^{\oplus} \pi \mu(\pi)
$$

This is a unitary representation of $G$, and the Plancherel measure $\mu$ is supported on the class of $H$-distinguished representations.

## Motivations

## Why bother?:

## Global motivation:

Let $\phi$ be an automorphic form on $G\left(\mathbb{A}_{F}\right)$, with $F$ a number field. Then we are interested in understanding if

$$
\int_{Z H(F) \backslash H\left(\mathbb{A}_{F}\right)} \phi(h) \chi(h) d h \neq 0
$$

Relative Trace formula

## Baby case: $G L_{2}=G L_{2}(F)$, and its torus $T=T(F)$

$$
B=\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)=\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right) \ltimes\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) \quad a, d \in F^{\times}, b \in F
$$

## Baby case: $G L_{2}=G L_{2}(F)$, and its torus $T=T(F)$

$$
\begin{aligned}
B & =\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)=\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right) \ltimes\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) \quad a, d \in F^{\times}, b \in F \\
\operatorname{Ind}_{B}^{G}(\chi) & :=\left\{f: G L_{2} \rightarrow V, f(b g)=\left(\delta_{B}^{1 / 2} \chi\right)(b) f(g), b \in B, g \in G L_{2}\right\}
\end{aligned}
$$

Question: For which $\chi$ is $\operatorname{Ind}_{B}^{G L_{2}}(\chi)$ a $T$-distinguished representation?

## Baby case: $G L_{2}=G L_{2}(F)$, and its torus $T=T(F)$

$$
\begin{aligned}
B & =\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)=\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right) \ltimes\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) \quad a, d \in F^{\times}, b \in F \\
\operatorname{ld}_{B}^{G}(\chi) & :=\left\{f: G L_{2} \rightarrow V, f(b g)=\left(\delta_{B}^{1 / 2} \chi\right)(b) f(g), b \in B, g \in G L_{2}\right\}
\end{aligned}
$$

Question: For which $\chi$ is $\operatorname{Ind}_{B}^{G L_{2}}(\chi)$ a $T$-distinguished representation?
Let $Z \subset T$ be the center of $G L_{2}$. Let us look at: $R(z) \cdot f(g)=$

## Baby case: $G L_{2}=G L_{2}(F)$, and its torus $T=T(F)$

$$
\begin{aligned}
B & =\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)=\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right) \ltimes\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) \quad a, d \in F^{\times}, b \in F \\
\operatorname{ld}_{B}^{G}(\chi) & :=\left\{f: G L_{2} \rightarrow V, f(b g)=\left(\delta_{B}^{1 / 2} \chi\right)(b) f(g), b \in B, g \in G L_{2}\right\}
\end{aligned}
$$

Question: For which $\chi$ is $\operatorname{lnd}_{B}^{G L_{2}}(\chi)$ a $T$-distinguished representation?
Let $Z \subset T$ be the center of $G L_{2}$. Let us look at: $R(z) \cdot f(g)=$ $f(g z)=\left(\delta_{B}^{1 / 2} \chi\right)(z) f(g)$
Take $\ell \in \operatorname{Hom}_{T}\left(\operatorname{Ind}_{B}^{G L_{2}}(\chi), 1\right)$. Then $\ell(R(z) \cdot f)=\ell(\chi(z) \cdot f)=\chi(z) \ell(f)=\ell(f)$, so we need

$$
\chi \mid z=1
$$

Necessary condition: The representation $\operatorname{Ind}_{B}^{G L_{2}}(\chi)$ has a trivial central character.

## Sufficient condition

We need to look at the double coset $B \backslash G L_{2} / T$. Using Bruhat decomposition, we find:

$$
\begin{gathered}
G L_{2}=B \sqcup B\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \sqcup B\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right) T \\
B \backslash G L_{2} / T=\left\{B=\left\{g_{21}=0\right\} ; B w=\left\{g_{22}=0\right\} ; B \eta T=\left\{g_{21} g_{22} \neq 0\right\}\right\}
\end{gathered}
$$

Since $B \eta T$ is open, we can look at the $T$-invariant space

$$
V=\left\{f \in \operatorname{Ind}_{B}^{G L_{2}}(\chi) \mid \operatorname{Supp}(f) \in B \eta T\right\}
$$

## Sufficient condition

We need to look at the double coset $B \backslash G L_{2} / T$. Using Bruhat decomposition, we find:

$$
\begin{gathered}
G L_{2}=B \sqcup B\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \sqcup B\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right) T \\
B \backslash G L_{2} / T=\left\{B=\left\{g_{21}=0\right\} ; B w=\left\{g_{22}=0\right\} ; B \eta T=\left\{g_{21} g_{22} \neq 0\right\}\right\}
\end{gathered}
$$

Since $B \eta T$ is open, we can look at the $T$-invariant space

$$
V=\left\{f \in \operatorname{Ind}_{B}^{G L_{2}}(\chi) \mid \operatorname{Supp}(f) \in B \eta T\right\}
$$

We then get the filtration: $\left.0 \subseteq V \subseteq \operatorname{Ind}_{B}^{G L_{2}}(\chi)\right|_{T}$. If $\ell \in \operatorname{Hom}_{T}\left(\operatorname{Ind}_{B}^{G L_{2}}(\chi), 1\right)$ then either $\left.\ell\right|_{V} \neq 0$ (in which case, $\operatorname{Hom}_{T}(V, 1) \neq 0$ ) or $\ell$ is a non-zero element of $\operatorname{Hom}_{T}\left(\operatorname{Ind}_{B}^{G L_{2}}(\chi) / V, 1\right)$.

## Method: The Geometric Lemma

Remark: This method only allows to study $\pi \cong \operatorname{Ind}_{P}^{G}(\sigma)$

## Method: The Geometric Lemma

Remark: This method only allows to study $\pi \cong \operatorname{Ind}_{P}^{G}(\sigma)$
Theorem, Helminck-Wang: The double cosets $P \backslash G / H$ is finite (also true over the reals).

## Method: The Geometric Lemma

Remark: This method only allows to study $\pi \cong \operatorname{Ind}_{P}^{G}(\sigma)$
Theorem, Helminck-Wang: The double cosets $P \backslash G / H$ is finite (also true over the reals).
Lemma, Bernstein-Zelevinsky There exists an order $\left\{P \eta_{i} H\right\}_{i=1}^{N}$ on the double cosets $P \backslash G / H$ such that $\mathcal{O}_{i}=\cup_{j=1}^{i} P \eta_{j} H$, is open for any $i=1, \ldots, N$

## Method: The Geometric Lemma

Remark: This method only allows to study $\pi \cong \operatorname{Ind}_{P}^{G}(\sigma)$
Theorem, Helminck-Wang: The double cosets $P \backslash G / H$ is finite (also true over the reals).
Lemma, Bernstein-Zelevinsky There exists an order $\left\{P \eta_{i} H\right\}_{i=1}^{N}$ on the double cosets $P \backslash G / H$ such that $\mathcal{O}_{i}=\cup_{j=1}^{i} P \eta_{j} H$, is open for any $i=1, \ldots, N$ $V_{i}=\left\{f \in \operatorname{Ind}_{P}^{G}(\sigma): \operatorname{Supp}(f) \subseteq \mathcal{O}_{i}\right\}$ then $0 \subseteq V_{0} \subseteq V_{1} \subseteq \ldots \subseteq V_{N}=\left.\operatorname{Ind}_{P}^{G}(\sigma)\right|_{H}$ is a filtration of $\left.\operatorname{Ind}_{P}^{G}(\sigma)\right|_{H}$

## Method: The Geometric Lemma

Remark: This method only allows to study $\pi \cong \operatorname{Ind}_{P}^{G}(\sigma)$
Theorem, Helminck-Wang: The double cosets $P \backslash G / H$ is finite (also true over the reals).
Lemma, Bernstein-Zelevinsky There exists an order $\left\{P \eta_{i} H\right\}_{i=1}^{N}$ on the double cosets $P \backslash G / H$ such that $\mathcal{O}_{i}=\cup_{j=1}^{i} P \eta_{j} H$, is open for any $i=1, \ldots, N$ $V_{i}=\left\{f \in \operatorname{Ind}_{P}^{G}(\sigma): \operatorname{Supp}(f) \subseteq \mathcal{O}_{i}\right\}$ then $0 \subseteq V_{0} \subseteq V_{1} \subseteq \ldots \subseteq V_{N}=\left.\operatorname{Ind}_{P}^{G}(\sigma)\right|_{H}$ is a filtration of $\left.\operatorname{Ind}_{P}^{G}(\sigma)\right|_{H}$

If $\operatorname{Ind}_{P}^{G}(\sigma)$ is $H$-distinguished, then there exists $i$ such that $\operatorname{Hom}_{H}\left(V_{i} / V_{i-1} ; 1\right) \neq 0$. Indeed, if $\ell \in \operatorname{Hom}_{H}\left(\operatorname{Ind}_{P}^{G}(\sigma) ; 1\right) \neq 0$ then there exists $i$ minimal such that $\left.\ell\right|_{V_{i}} \neq 0$ defines a non-zero element of $\operatorname{Hom}_{H}\left(V_{i} / V_{i-1} ; \mathbf{1}\right)$.

Lemma

$$
\operatorname{Hom}_{H}\left(V_{i} / V_{i-1} ; 1\right)=\operatorname{Hom}_{P_{i}}\left(\delta_{P_{i}}^{-1} \delta_{P}^{1 / 2} \sigma, 1\right)
$$

where $P_{i}=\eta_{i} H \eta_{i}^{-1} \cap P$.

## Lemma

$$
\operatorname{Hom}_{H}\left(V_{i} / V_{i-1} ; 1\right)=\operatorname{Hom}_{P_{i}}\left(\delta_{P_{i}}^{-1} \delta_{P}^{1 / 2} \sigma, 1\right)
$$

where $P_{i}=\eta_{i} H \eta_{i}^{-1} \cap P$.
Set $x_{i}=\eta_{i} \theta\left(\eta_{i}\right)^{-1}, \theta_{x}(g)=x \theta(g) x^{-1}$ and $M_{x}=\left(M \cap \theta_{x}(M)\right)^{\theta_{x}}$.
Proposition (Closed orbit, Offen, 2017) Let $P=M \rtimes U$ be a standard parabolic subgroup of $G$ and $\sigma$ a smooth representation of $M$. Suppose that x is $M$-admissible, and $\theta_{x}(P)=P$. If $\sigma$ is $\left(M_{x}, \delta_{P_{x}} \delta_{P}^{-1 / 2} \chi^{\eta^{-1}}\right)$-distinguished then $\operatorname{Ind}_{P}^{G}(\sigma)$ is ( $H, \chi$ )-distinguished.

## What is $\mathrm{G}_{2}$ ?

$k, \mathbb{K}, \mathbb{B}, \mathcal{C}$ Hurwitz algebras of dimension $1,2,4,8$ (quaternions, octonions over $k$ ).
$\mathrm{G}_{2}$ is the group of automorphisms of the Cayley algebra. We embed $\mathrm{G}_{2}$ into $\mathrm{GL}_{8}$ using the action of the root subgroups/the torus of $\mathrm{G}_{2}$ on the octonions.

## The case of $\left(\mathrm{G}_{2}, \mathrm{SO}_{4}\right)$

In this talk, we will denote $G_{2}=\mathrm{G}_{2}(F), \mathrm{SO}_{4}=\mathrm{SO}_{4}(F) \ldots$ etc Our goal is to determine for which $\sigma$, and $\chi_{\mathrm{SO}_{4}}, \mathrm{Hom}_{\mathrm{SO}_{4}}\left(I_{P}^{\mathrm{G}_{2}}(\sigma), \chi_{\mathrm{SO}_{4}}\right) \neq 0$.


Lemma The quotient $\mathrm{G}_{2} / \mathrm{SO}_{4}$ is a symmetric space

Proposition (Closed orbit, Offen, 2017)
Let $P=M \rtimes U$ be a standard parabolic subgroup of $G$ and $\sigma$ a smooth representation of $M$. Suppose that $x$ is $M$-admissible, and $\theta_{x}(P)=P$. If $\sigma$ is $\left(M_{x}, \delta_{P_{x}} \delta_{P}^{-1 / 2} \chi^{\eta^{-1}}\right)$-distinguished then $\operatorname{Ind}_{P}^{G}(\sigma)$ is $(H, \chi)$-distinguished.

Our main results are the following:
Theorem (Closed orbit, D, 2022)
Let $\chi$ be a character of $\mathrm{SO}_{4}(F)$. It is a quadratic character of $F^{\times}$. It can be seen as a character of $\mathrm{GL}_{2}$ (those are given by $\chi \circ$ det for a quasi-character $\chi$ of $F^{\times}$). Let $P_{\beta}$ (resp. $P_{\alpha}$ ) denote the maximal parabolic corresponding to the root $\beta$ (resp. $\alpha$ ). The parabolic induced representations of $G_{2}$ which are ( $\mathrm{SO}_{4}, \chi$ )-distinguished include the following representations:

- The induction from $P_{\beta}$ to $G_{2}$ of the reducible principal series $I\left(\chi \delta_{P_{\beta}}^{1 / 2}\left|.\left.\right|^{-1 / 2} \otimes\right| . \mid\right)$ of $\mathrm{GL}_{2}$.
- The induction from $P_{\alpha}$ to $G_{2}$ of the reducible principal series $I\left(\chi \delta_{P_{\alpha}}^{1 / 2}\left|.\left.\right|^{1 / 2} \otimes \chi \delta_{P_{\alpha}}^{1 / 2}\right| .\left.\right|^{-1 / 2}\right)$ of $\mathrm{GL}_{2}$.
- The induced representation $I_{P_{\beta}}^{G_{2}}\left((\chi \circ \operatorname{det}) \delta_{P_{\beta}}^{1 / 2}\right)$
- The induced representation $I_{P_{\alpha}}^{G_{2}}\left((\chi \circ \operatorname{det}) \delta_{P_{\alpha}}^{1 / 2}\right)$.


## A more structural approach

## Joint work with Nadir Matringe.

Definition
A quaternion algebra $D=D_{\alpha, \beta}$ over a field $F$ is a 4-dimensional vector space over $F$, with basis $\{1, i, j, k\}$, given the structure of an algebra with the multiplication rules

$$
i^{2}=\alpha, \quad j^{2}=\beta
$$

and $i j=-j i=k$ for some $\alpha$ and $\beta$ in $F^{\times}$.

## A more structural approach

## Joint work with Nadir Matringe.

## Definition

A quaternion algebra $D=D_{\alpha, \beta}$ over a field $F$ is a 4-dimensional vector space over $F$, with basis $\{1, i, j, k\}$, given the structure of an algebra with the multiplication rules

$$
i^{2}=\alpha, \quad j^{2}=\beta
$$

and $i j=-j i=k$ for some $\alpha$ and $\beta$ in $F^{\times}$.
Fact 1: A split quaternion algebra $\cong M_{2}(F)$. We use the Cayley-Dickson construction of the split octonions: $\mathbb{O}_{p}=M_{2}(F) \oplus M_{2}(F)$, equipped with the norm $n_{\mathbb{O}_{p}}((x, y))=\operatorname{det}(x)-\operatorname{det}(y)$.

## A more structural approach

## Joint work with Nadir Matringe.

## Definition

A quaternion algebra $D=D_{\alpha, \beta}$ over a field $F$ is a 4-dimensional vector space over $F$, with basis $\{1, i, j, k\}$, given the structure of an algebra with the multiplication rules

$$
i^{2}=\alpha, \quad j^{2}=\beta
$$

and $i j=-j i=k$ for some $\alpha$ and $\beta$ in $F^{\times}$.
Fact 1: A split quaternion algebra $\cong M_{2}(F)$. We use the Cayley-Dickson construction of the split octonions: $\mathbb{O}_{p}=M_{2}(F) \oplus M_{2}(F)$, equipped with the norm $n_{\mathbb{O}_{p}}((x, y))=\operatorname{det}(x)-\operatorname{det}(y) . \mathrm{SO}_{4}$ is the subgroup of automorphisms of the octonions that fix a split quaternionic subalgebra!

Our question today: describe structurally $P_{\beta} \backslash G_{2} / \mathrm{SO}_{4}$ and $P_{\alpha} \backslash G_{2} / \mathrm{SO}_{4}$

Our question today: describe structurally $P_{\beta} \backslash G_{2} / \mathrm{SO}_{4}$ and $P_{\alpha} \backslash G_{2} / \mathrm{SO}_{4}$
Definition (Nil-subalgebra)
A nil-subalgebra is a subspace of $\mathbb{O}_{p}$ consisting of trace zero elements with trivial multiplication (the product of any two elements is zero).

The quotient $P_{\beta} \backslash G_{2}$ (resp. $P_{\alpha} \backslash G_{2}$ ) correspond to the set of nil-subalgebras of dimension 1 (resp. dim 2) of the split octonions $\mathbb{O}_{p}$.

Our question today: describe structurally $P_{\beta} \backslash G_{2} / \mathrm{SO}_{4}$ and $P_{\alpha} \backslash G_{2} / \mathrm{SO}_{4}$ Definition (Nil-subalgebra)
A nil-subalgebra is a subspace of $\mathbb{O}_{p}$ consisting of trace zero elements with trivial multiplication (the product of any two elements is zero).

The quotient $P_{\beta} \backslash G_{2}$ (resp. $P_{\alpha} \backslash G_{2}$ ) correspond to the set of nil-subalgebras of dimension 1 (resp. dim 2) of the split octonions $\mathbb{O}_{p}$.
Fact 2: $\mathrm{SO}_{4}$ is the centralizer of the involution $\epsilon$ in $\mathbb{O}_{p}: \epsilon(a, b)=(a,-b)$.

Fact 3: $\mathrm{SO}_{4}=\mathrm{SL}_{2,5} \times \mathrm{SL}_{2, /} / \Delta \mu_{2}=P G L 2 \times S L_{2}$ and acts on $M_{2}(F) \oplus M_{2}(F)$ by $(g, h)(x, y)=\left(g^{2,-1}\right.$, hgyg $\left.^{-1}\right)$.

## Nil-subalgebras of the split octonions

## Lemma

Any element in a nil-subalgebra of the split octonions has the form: $\gamma\left(M_{0}, M\right)$ for $\gamma$ in $F$, with $M_{0}^{2}=-\operatorname{det}(M) I_{2}$ and $\operatorname{Tr}\left(M_{0}\right) M=0$.

Proof.
Just an application of the 2-nilpotency of such element and using the multiplication law of the octonions

$$
(a+\ell b)(c+\ell d)=(a c+\lambda \bar{d} b)+\ell(d a+b \bar{c})
$$

## Lemma

There are $\left|F^{\times} /\left(F^{\times}\right)^{2}\right|+4$ orbits for the action of $\mathrm{SO}_{4}$ on $P_{\beta} \backslash G_{2}$.

## Proof:

Using the description of the nil-subalgebras of dimension 1 above, let us distinguish three cases where the nil-subalgebra is generated by: $\left(M_{0}, M\right)$ with $M=0(1),\left(M_{0}, M\right)$ with $M_{0}=0(2)$, and $\left(M_{0}, M\right)$ with both $M_{0}$ and $M$ non-zeros (3).

## Lemma

$$
\text { There are }\left|F^{\times} /\left(F^{\times}\right)^{2}\right|+4 \text { orbits for the action of } \mathrm{SO}_{4} \text { on } P_{\beta} \backslash G_{2} \text {. }
$$

## Proof:

Using the description of the nil-subalgebras of dimension 1 above, let us distinguish three cases where the nil-subalgebra is generated by: $\left(M_{0}, M\right)$ with $M=0(1),\left(M_{0}, M\right)$ with $M_{0}=0(2)$, and $\left(M_{0}, M\right)$ with both $M_{0}$ and $M$ non-zeros (3).
(1) Since $M=0$, we have only the condition $M_{0}^{2}=0$ (i.e $\operatorname{Tr}\left(M_{0}\right)$ is not necessarily 0 ). Remembering that the $P G L_{2}$-conjugacy classes of $M_{2}(F)$ are parametrized by Jordan types, and using the fact that $M_{0}$ also needs to be 2-nilpotent, there is only one element: $M_{0}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
(2) We get the equation, $\operatorname{det}(M)=0$, we have two Jordan types, but as we let $S L_{2}$ acts by translation on the left, they are in the same orbit, so once more we are left with the nilpotent conjugacy classes in the set $M_{2}(F)$ under the action of $S L_{2}$. The nillines (1), and (2) constitute the two closed parabolic orbits.
(3) Finally, let us assume both $M_{0}$ and $M$ are non-zero.

First, we notice that $k\left(M_{0}, M\right)$ with $k \in F$ with both matrices of rank 1 , and $k^{\prime}\left(M_{0}^{\prime}, M^{\prime}\right), \quad k^{\prime} \in F$ with $M_{0}^{\prime}$ and $M^{\prime}$ of rank 2 can not be in the same $\mathrm{SO}_{4}$-orbit. Actually the first case gives us already two additional orbits 3a).
(2) We get the equation, $\operatorname{det}(M)=0$, we have two Jordan types, but as we let $S L_{2}$ acts by translation on the left, they are in the same orbit, so once more we are left with the nilpotent conjugacy classes in the set $M_{2}(F)$ under the action of $S L_{2}$. The nil-lines (1), and (2) constitute the two closed parabolic orbits.
(3) Finally, let us assume both $M_{0}$ and $M$ are non-zero.

First, we notice that $k\left(M_{0}, M\right)$ with $k \in F$ with both matrices of rank 1 , and $k^{\prime}\left(M_{0}^{\prime}, M^{\prime}\right), \quad k^{\prime} \in F$ with $M_{0}^{\prime}$ and $M^{\prime}$ of rank 2 can not be in the same $\mathrm{SO}_{4}$-orbit. Actually the first case gives us already two additional orbits 3a). Let us consider now the second case 3b). We the equation $M_{0}^{2}=-\operatorname{det}(M) l_{2}$.

The minimal polynomial for $M_{0}$ is $P(x)=x^{2}+\operatorname{det}(M) I$, and it is also the characteristic polynomial, since $\operatorname{det}(M)=\operatorname{det}\left(M_{0}\right)$. As the characteristic and the minimal polynomials are equal, there is only one conjugacy class of matrices $M_{0}$ verifying $P\left(M_{0}\right)=0$.

The minimal polynomial for $M_{0}$ is $P(x)=x^{2}+\operatorname{det}(M) I$, and it is also the characteristic polynomial, since $\operatorname{det}(M)=\operatorname{det}\left(M_{0}\right)$. As the characteristic and the minimal polynomials are equal, there is only one conjugacy class of matrices $M_{0}$ verifying $P\left(M_{0}\right)=0$.

In particular, multiplying such a matrix by a scalar $t$ would give us the equation $t^{2}\left(M_{0}\right)^{2}=-\lambda /_{2}$, so the square classes in $F$ (they are four of them) parametrize this set.

Because the four orbits are characterized by the equations $\operatorname{det}(M) \neq 0, \operatorname{det}\left(M_{0}\right) \neq 0$, these parabolic orbits are open.

## List of the orbits of nil-lines

$$
\left\{\begin{array}{l}
\left(0,\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right) \text { and }\left(\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), 0\right) \text { closed orbits } \\
\left(\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right) \text { and }\left(\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\right) \text { rank one orbits } \\
\left(\left(\begin{array}{ll}
0 & t \\
1 & 0
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
0 & -t
\end{array}\right)\right) \text { open orbits }
\end{array}\right.
$$

## Lemma (Tentative lemma)

There are $\left|F^{\times} /\left(F^{\times}\right)^{2}\right|+2$ orbits for the action of $\mathrm{SO}_{4}$ on $P_{\alpha} \backslash G_{2}$.

## Proof:

We look for pairs of nil-lines $\left(N_{1}, N_{2}\right)$ so that $N_{1} . N_{2}=0$, and let $\mathrm{SO}_{4}$ acts diagonally on such pairs. Further, we need to consider the nil-subalgebras, i.e $\operatorname{Vect}\left(N_{1}, N_{2}\right)$. Let $\mathcal{N}$ be such a 2-dimensional nil-subalgebra, if $\left(0,\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\right)$ belongs to $\mathcal{N}$, then using the nilpotency equations, and some simplification using the $\mathrm{SO}_{4}$-action, we get

$$
\mathcal{N}:=F \cdot\left(0,\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right) \oplus F \cdot\left(0,\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right) .
$$

If $\left(\left(\begin{array}{ll}0 & t \\ 1 & 0\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ 0 & -t\end{array}\right)\right)$ belongs to $\mathcal{N}$, let $N_{2}:=\left(u=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), v=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)\right)$.
Using the nilpotency equation, we get

$$
(u, v)=\left(\left(\begin{array}{ll}
a & b \\
0 & a
\end{array}\right),\left(\begin{array}{cc}
b / t & a \\
a & 0
\end{array}\right)\right)
$$

Then deal with the case $a=0$ and $a \neq 0$ separately. In the first, get one orbit, and in the second, get again $\left|F^{\times} /\left(F^{\times}\right)^{2}\right|$ of them (open).

Thank you for your attention!

