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A transcendental dynamical degree

Throughout this talk X will be a projective variety and f will be
a dominant rational self-map of X. One wishes to study the
dynamical system (X, f).

The most fundamental dynamical invariant of a dominant
rational self-map f : X 99K X of a smooth projective variety is,
arguably, the (first) dynamical degree λ(f).

Definition
The dynamical degree is defined as the limit
limn→∞(fn∗H ·HdimX−1)1/n for an ample divisor H on X.

Its value does not depend on the choice of H, and it is also
invariant under birational conjugacy: if h : X ′ 99K X is a
birational map, then f ′ := h ◦ f ◦ h−1 : X ′ 99K X ′ is a dominant
rational map with λ(f ′) = λ(f).
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A transcendental dynamical degree

Computing the dynamical degree(s) is often the first step in
understanding the dynamical system (X, f).

In general, one has higher dynamical degrees (one for each i
up to the dimension of X). These dynamical degrees were
introduced by Friedland. We note that they were originally
defined with a limsup instead of a limit, but Dinh-Sibonny
showed that they exist.
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This dynamical degree is of fundmamental importance in
complex dynamics, but we note that it is also related to
questions in arithmetic dynamics via work of Kawaguchi and
Silverman. When one works over a global field, the (first)
dynamical degree serves as an upper bound for the
asymptotics of the growth of heights along orbits; the question
of when equality holds is part of the Kawaguchi–Silverman
conjecture.
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We note that the sequence

dn := (fn∗H ·HdimX−1)

is submultiplicative; i.e., dndm ≤ dn+m and so the limit of d1/n
n

always exists.

But let’s look at a more intuitive way of viewing the dynamical
degree in the case when

X = Pd.
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A rational self-map f : Pd → Pd is given (on a dense open set)
by

f = [P0 : P1 : · · · : Pd],

where P0, . . . , Pd ∈ C[X0, . . . , Xd] are homogeneous
polynomials of the same degree m with P0, . . . , Pd having no
common non-constant polynomial factor.

Then m is the degree of f , and the dynamical degree of f is

lim
n→∞

(deg(fn))1/n.
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Now we can see intuitively why we expect submultiplicativity of
the sequence of degrees: If

fm = [P0 : · · · : Pd]

and
fn = [Q0 : · · · : Qd]

then

fn+m = [P0(Q0, . . . , Qd) : · · · : Pd(Q0, . . . , Qd)],

so if fm has degree a and fn has degree b, the the polynomials
Pi(Q0, . . . , Pd) have degree ab. So

deg(fn+m) ≤ deg(fn)deg(fm).
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Example.

Let f : P1 → P1 be the map f([X : Y ]) = [X2 : Y 2]. Then f has
degree 2 and in general

fn([X : Y ]) = [X2n : Y 2n ].

Thus fn has degree 2n and so its dynamical degree is the limit
of (2n)1/n → 2.
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We don’t get in general deg(fn) = deg(f)n, because there can
be common factors in the polynomials. For example, consider
the map

f : P2 → P2

given by f([X : Y : Z]) = [Y Z : XZ : XY ]. Then f has degree
2 but f2([X : Y : Z]) = [X2Y Z : XY 2Z : XY Z2] = [X : Y : Z],
which has degree 1. In particular, fn has degree 2 if n is odd
and has degree 1 if n is even and so the dynamical degree of
this f is 1.
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In general the dynamical degree doesn’t have to be an integer.
Here’s an example. Let X = A2 and let f : X → X be the map
f(u, v) = (uv, u). Then f2(u, v) = (u2v, uv),
f3(u, v) = (u3v2, u2v), and in general

fn(u, v) = (uFn+1vFn , uFnvFn−1),

where F0 = 0, F1 = 1, F2 = 1, F3 = 2, . . . are the Fibonacci
numbers.

So fn has degree Fn+1 + Fn = Fn+2 and since F 1/n
n → ρ, the

Golden ratio, we see that the dyamical degree of f , λ(f), is ρ.
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Let’s do one more example! Let f : A2 → A2 be the map
f(u, v) = (uv, v). Then fn(u, v) = (uvn, v) and one can see that
the degree of fn is n+ 1 and so the dynamical degree is the
limit of (n+ 1)1/n → 1.

The fact that the dynamical degree of this map is 1 says that
the dynamical system is in some sense tamer than the
preceding example.

Slide 11



A transcendental dynamical degree

The dynamical degree is often difficult to compute. There are a
few cases where things have been worked out.
• (Sibony) If f is algebraically stable; i.e., fn∗ = f∗n for the

induced pullbacks of divisors on X, then λ(f) is equal to
the spectral radius of the Z-linear operator
f∗ : NSR(X)→ NSR(X) on the real Neron-Severi group
NSR(X), and this implies that λ(f) is an algebraic integer.
• (Diller-Favre) for birational maps of P2 one can achieve

algebraic stability after birational conjugation, so the
dynamical degrees are algebraic integers.
• (Favre-Jonsson) For dominant endomorphisms of A2 the

dynamical degrees are always algebraic integers.
• (Bonifant-Fornæss, Urech) There are only countably many

different dynamical degrees.
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These results lead naturally to the question: is the dynamical
degree always an algebraic integer, or at least an algebraic
number?

The answer is ‘NO’:

Theorem
(B-Diller-Jonsson 2019) There exists a dominant rational map
f : P2 99K P2 whose dynamical degree is a transcendental
number.
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In recent work this has been extended:

Theorem
(B-Diller-Jonsson-Krieger, 2024) There exists a birational map
f : P3 99K P3 whose dynamical degree is a transcendental
number.

The general strategy for this new work is similar to the one
employed in the non-birational case, but there are additional
subtleties that arise on both the complex dynamics side and the
Diophantine approximation side and on connecting these two
components, which is generally straightforward in the
non-birational case.
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Analysis of the non-birational case

We give a family of such examples of the form f = τ ◦ σ, where

σ(y1, y2) =

(
−y1

1− y1 + y2

1− y1 − y2
,−y2

1 + y1 − y2

1− y1 − y2

)
,

which is a birational involution and

τ(y1, y2) = (ya1y
b
2, y
−b
1 ya2)

is monomial map with the property (a+ bi)n 6∈ R for all integers
n > 0.

Then every f of this form has the property that λ(f) is
transcendental.
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Favre, in 2003, showed that under the above conditions the
map τ cannot be conjugated to an algebraically stable map,
although λ(τ) =

√
a2 + b2. Note that λ(σ) = 1.

In general, the degrees of fn are closely related to the degrees
of τn as follows.

Let dj := deg(τ j) for j ≥ 0. Then λ = λ(f) is the unique positive
solution to the equation

∞∑
j=1

djλ
−j = 1. (?)
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The idea behind this expression for λ(f) is very difficult and
relies on a careful analysis of the actions of σ and τ on the
space of valuations of the function field of P2. What is shown by
induction is that the following holds:

dn = deg(τn) and en = deg(fn)

for n ≥ 1, then

en =

n−1∑
j=0

ejdn−j

for n ≥ 1, (where we set d0 = 1 and e0 = 2).
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This means that if we let

E(z) =
∑
n≥0

enz
n

and
D(z) =

∑
n≥1

dnz
n

then
E(z)(1−D(z)) = 2.

The dynamical degree of f is 1/rE , where rE ≤ 1 is the radius
of convergence of f . Similarly the dynamical degree of τ is
1/rD, where rD < 1 is the radius of convergence of D. It is
well-known that limz→r−D

D(z) =∞, so there is a unique point
z0 ∈ (0, rD) with D(z0) = 1. Then the radius of convergence of
E is z0 and so we see that λ = 1/z0 and

∞∑
j=1

djλ
−j = 1.
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So now the question becomes: how do we show that the
solution λ to the equation D(λ−1) = 1 is transcendental?

Let’s recast this as a problem in diophantine approximation. We
have a power series D(z) that is not algebraic and which has
some nice additional structure. Then one expects that its
specializations at Q̄-points inside the radius of convergence
should be transcendental unless there is some compelling
reason that they are not.

Slide 19



A transcendental dynamical degree

Example.

(Siegel-Shidlovsky, Beukers) If we take the function ex. Then ex

is a transcendental E-function and eα is transcendental for all
nonzero algebraic values α. This is a general phenomenon for
(non-polynomial) E-functions, where after excluding a finite
computable set of “bad” values one always has transcendence
after specialization.

Example. (Philippon, Adamczewski-Faverjon) If we take an
irrational Mahler series F (z) over a number field then F (α) is
transcendental outside for algebraic α inside the radius of
convergence outside of a computable set of “bad” values.
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So we can now see a general approach to showing that λ(f) is
transcendental: use the structure of D to show that D(α) is
transcendental for algebraic α in the radius of convergence of
D, outside of a set of “bad” values and then show that α = 1/λ
cannot not bad. But now D(α) = 1, so α cannot be algebraic!

But how are results of this type obtained in practice?
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The idea is that one takes the series D(z) and shows one has
“good” approximations by rational functions Φ1(z),Φ2(z), . . .
(with rational coefficients) in the sense that if Φn has degree an
then

D(z)− Φn(z) = O(zAan)

with A > 2 fixed.

One then wants to argue that Φn(α) is a good approximation of
D(α).

Then one wants to argue that D(α) has to be transcendental
unless, by some fluke, Φn(α) just happens to agree with D(α).
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To successfully apply this strategy, we need a closed form for
the series

D(z) = d1z + d2z
2 + d3z

3 + · · · ,

where
dj = deg(τ j)

and
τ(y1, y2) = (ya1y

b
2, y
−b
1 ya2).

Here it is an elementary computation to show

dj = Re(γ(j)ζj),

where ζ = a+ bi and γ(j) ∈ {−2,±2i, 1± 2i} is chosen to be
whichever element maximizes the right side.
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Intuitively ζ = r exp(iθ) where r =
√
a2 + b2 and

ζn = rn exp(inθ). Then depending on nθ we use the following
rules to compute dn.

Rez + 2Imz

Rez − 2Imz

2Imz

−2Imz

−2Rez
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We are interested when the angle θ is irrational. In this case,
Hasselblatt–Propp showed that the sequence (dj)j≥1 does not
satisfy any finite linear recurrence relation. In particular, it is an
irrational power series. In fact, it is not even algebraic!
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We’ll use the fact that the angle θ has reasonably good rational
approximations to produce rational function approximations to
the series D(z) =

∑
dnz

n. To then obtain transcendence we
use the p-adic subspace theorem.

This approach was first employed by Corvaja and Zannier
(2002) and later, famously, by Adamczewski and Bugeaud in
2007 in showing that automatic real numbers are either rational
or transcendental. We have to use substantially more linear
forms, however, due to the fact that we do not have a strong
understanding of the angles θ that arise.
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Constructing rational approximations

The easier part of the transcendence proof is to construct
rational approximations to the series D(z).

The idea is that if m/n is a continued fraction approximant of θ,
then ζn is nearly a positive real number. As a result, we expect
γ(j + n) = γ(j) unless zj is very close to one of the boundaries
where discontinuities occur in our picture. But we expect γ(j) to
be “nearly” n-periodic in j, and so we expect that D(z) is
well-approximated by the rational function
D(n)(z) := (1− zn)−1

∑n
j=1Djz

j obtained by assuming the γ(j)
are precisely n-periodic.
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This is not quite the case, but we can show that if C > 0 then
the number of “bad” indices j ≤ Cn for which γ(j + n) 6= γ(j) is
≤ K, where K depends only on C. Moreover, we can show that
the “bad” indices are repelling in some sense, which ends up
being important.

So to obtain a good approximation, we adjust D(n)(z) by adding
on ≤ K terms to correct for the bad j’s in the range. We then
obtain a series Φn(z) with the property that

D(z)− Φn(z) = O(zCn).
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Showing Φn(α) is a good approximation of D(α)

Here is where the p-adic subspace theorem comes in. We give
a quick overview of the ideas involved.
• Let K be a number field of degree d := [K : Q].
• Let M(K) denote the set of places of K. Recall that each

place v ∈M(K) is either finite or infinite and, in either
case, determines a normalized absolute value
| · |v : K → [0,∞).
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• (finite places) If v ∈Mfin(K) ⊂M(K) is finite, it
corresponds to a prime ideal p of the ring of integers OK of
K, then the order ordpx of x ∈ OK is the largest power
m ≥ 0 such that x ∈ pm. If more generally x ∈ K, then one
writes x = a/b for some a, b ∈ OK and
ordpx := ordpa− ordpb.

|x|v := 0 if x = 0, and |x|v := N(p)−ordp(x) if x 6= 0, where
N(p) is the cardinality of the finite field OK/p.
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• If v ∈Minf(K) ⊂M(K) is an infinite place, v is either real
or complex. In the first case, v corresponds to a real
embedding τ : K → R, and we take |x|v = |τ(x)|, where | · |
is the ordinary absolute value on R. In the second case, v
corresponds to a distinct pair τ, τ̄ : K → C of complex
embeddings, and we take |x|v = |τ(x)|2 = |τ̄(x)|2.
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With these definitions we then have a product formula∏
v∈M(K)

|c|v = 1

for c ∈ K∗. (And I should add that |c|v = 1 for all but finitely
many places when c ∈ K∗.)
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If S ⊂M(K) is a finite set of places containing all infinite
places, then we call
OK,S := {a ∈ K : |a|v ≤ 1 for all v ∈M(K) \ S} the set of
S-integers in K.
Note that if S = Minf(K), then OK,S = OK is just the usual ring
of integers. Given a vector x = (x1, . . . , xm) ∈ OmK,S we set

HS(x) =
∏
v∈S

max{|x1|v, . . . , |xm|v}.
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We make use of the following theorem of Evertse, which is
related to the p-adic subspace theorem but is better suited to
our purposes.

Theorem
Let S ⊂M(K) be a finite set of places of K containing all
infinite places, m ≥ 2 an integer, and ε > 0. There is a constant
c = c(K,S,m, ε) > 0 such that if x = (x1, . . . , xm) ∈ OmK,S and∑

k∈I xk 6= 0 for every nonempty subset I ⊂ {1, 2, . . . ,m}, then
for any v0 ∈ S

|x1 + · · ·+ xm|v0 ≥ c
max{|x1|v0 , . . . , |xm|v0}
HS(x)ε

∏
v∈S

∏m
k=1 |xk|v

.
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How do we use Evertse’s theorem?

Recall we produced a rational approximation Φn(z) to D(z),
where Φn(z) took a truncated series (1− zn)−1(d1z + · · ·+ dnn)
and then corrected by adding a uniformly bounded number of
monomials c1z

a1 + · · ·+ ckz
ak with the ci in a fixed finite set.

We can rewrite this as

(1−zn)D(z) = (d1z+· · ·+dnzn)+(1−zn)(c1z
a1+· · ·+ckzak)+O(zCn).

Slide 35



A transcendental dynamical degree

Now recall that the goal is to show that if α is algebraic and
inside the radius of convergence of D(z) then D(α) is
transcendental unless there is some compelling reason
otherwise. The original Corvaja-Zannier strategy works as
follows:
• assume towards a contradiction that β := D(α) is

algebraic;
• use the p-adic subspace with forms involving β and Φn(α)

to show that this can only occur if β = Φn(α) for all n;
• then show this can’t occur (typically using ad hoc

methods).
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We return to the equation

(1− zn)D(z) = (d1z+ · · ·+ dnz
n) + (1− zn)(c1z

a1 + · · ·+ ckz
ak).

We take S to be the set of places that contains all infinite places
and the places at which nonzero elements from D(α), α, the
γ(j), and the ci are not equal to one. Then we have

(1− αn)D(α) ≈
n∑
j=1

djα
j + (1− α)n(c1α

a1 + · · ·+ ckα
ak).

We now use technical estimates, applying Evertse’s theorem
and we conclude that if D(α) is algebraic then it is equal to
Φn(α) for all sufficiently large n.
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Finally we use an ad hoc argument to show that if α is positive
and real and inside the radius of convergence of D then
D(α) > Φn(α) for every n and so we conclude that α = 1/λ
cannot be algebraic.
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How do we go to the birational case?
As mentioned earlier, to go to the birational case, we have to go
up in dimension. We can take the same idea as before, but
there are additional subtleties.

Theorem
(B-Diller-Jonsson-Krieger) There exists an automorphism
φ : P3 → P3 and a matrix A ∈ SL3(Z) such that the birational
map f : P3 → P3 given by

f = φ−1 ◦m−I ◦ φ ◦mA (1)

has transcendental dynamical degree.

Here for a 3× 3 integer matrix B with det(B) = 1, we define

mB(x, y, z) = (xb1,1yb1,2zb1,3 , xb2,1yb2,2zb2,3 , xb3,1yb3,2zb3,3).
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What changes?
As before, there are really two components: proving an
expression for the dynamical degree that gives it as a solution λ
to the equation F (λ) = 1, where F (x) is some power series
with coefficients in some number field; then proving
transcendence of λ in a way similar to the one explained before.

As it turns out, both finding the expression and proving
transcendence are considerably more difficult in this birational
case and involve completely new ideas. But there is a new
problem: the transcendence results require the addition of new
technical conditions because the expression for the power
series F (x) is considerably more involved. For this reason,
even seeing that there are matrices A for which all the
conditions are satisfied is completely non-obvious and we
require the use of deep theorems from the theory of algebraic
groups to prove the existence of such an A.
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We’re able to prove that there are “lots” of matrices A such that
the map f = φ−1 ◦m−I ◦ φ ◦mA has transcendental dynamical
degree, but finding a specific one is the problem of “finding hay
in a haystack.” Jeff Diller used Mathematica to verify that there
is a specific 3× 3 matrix A that works whose entries are
bounded by 14, this ended up being surprisingly difficult to
verify and involved showing that several integer linear
recurrences have no zeros. So if one accepts computer
assistance, one can find a completely explicit birational map of
P3 that has transcendental dynamical degree.
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Thanks!
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