Cohomological Duality in the Local Langlands Correspondence for p-adic Groups

James Steele

March 22, 2024

The Langlands Philosophy and L-functions

- From automorphic representations to Galois representations:

- The L-function breaks up according to local fields:

$$
L(s, \pi)=\prod L\left(s,\left.\pi\right|_{\mathbb{Q}_{p}}\right)
$$

with $\mathbb{Q}_{p} \cong \mathbb{R}$ when $p=\langle 0\rangle$, and the p-adic numbers otherwise. Indeed,

$$
\pi \cong \bigotimes_{\langle p\rangle \operatorname{Spec} \mathbb{Z}} \pi_{p}
$$

Vogan's Conception of the Local Langlands Correspondence (LLC)

- The classical conception: a finite-to-one map

$$
\left\{\begin{array}{c}
\text { Smooth, irreducible } \\
\mathbb{C} \text {-representations of } \\
G=G(F)
\end{array}\right\} \rightarrow\left\{\begin{array}{c}
\text { Admissible group } \\
\text { homomorphisms } W_{F}^{\prime} \rightarrow{ }^{L} G \\
(\text { Langlands Parameters })
\end{array}\right\}
$$

- Vogan's reinterpretation: a bijection

$$
\left\{\begin{array}{c}
\text { Smooth, irreducible } \\
\mathbb{C} \text {-representations of } \\
G=G(F) \text { with } \\
\text { central character } \chi
\end{array}\right\} \leadsto \leadsto\left\{\begin{array}{c}
\text { Simple, equivariant, } \\
\text { perverse sheaves in } \\
\operatorname{Per}_{\widehat{G}}\left(X_{\lambda}\right)^{\circ}
\end{array}\right\}
$$

- We call the left-hand-side the spectral side, and the right-hand-side the geometric side.

The Spectral Category

- Recall that the Bernstein centre of G is the ring

$$
Z(\operatorname{Rep}(G)):=\operatorname{End}\left(\mathbb{1}_{\operatorname{Rep}(G)}\right)
$$

the endomorphism algebra of the identity endofunctor on $\operatorname{Rep}(G)$.

- The Bernstein centre acts on any irrep via a central character

$$
\chi: Z(\operatorname{Rep}(G)) \rightarrow \mathbb{C}
$$

- Only finitely many isomorphism classes of irreps share any given χ.
- The spectral category is then

$$
\operatorname{Mod}\left(\operatorname{Ext}_{G}^{\bullet}(\Sigma, \Sigma)\right)
$$

where Σ is the direct sum of a representative from each isomorphism class of these irreducibles.

The Geometric Category

- A restricted Langlands correspondence gives a map $\chi \mapsto \lambda$,

$$
\lambda: W_{F} \longrightarrow{ }^{L} G:=\hat{G} \rtimes W_{F}
$$

is an infinitesimal parameter.

- We then define the Vogan variety, given by

$$
V_{\lambda}:=\left\{x \in \operatorname{Lie}(\hat{G})\left|\lambda(w) x \lambda(w)^{-1}=|w|_{F} x, \forall w \in W_{F}\right\}\right.
$$

equipped with an action of the algebraic group

$$
H_{\lambda}:=\left\{g \in \hat{G} \mid \lambda(w) g \lambda(w)^{-1}=g, \forall w \in W_{F}\right\}
$$

- We then consider the indecomposable Abelian subcategory of H_{λ}-equivariant perverse sheaves on V_{λ} whose simple objects are in bijection with the L-packets attached to χ, up to equivalence, and we have

$$
\operatorname{Per}_{H_{\lambda}}\left(V_{\lambda}\right)^{\circ} \hookrightarrow \operatorname{Per}_{H_{\lambda}}\left(V_{\lambda}\right) \simeq \operatorname{Per}_{\widehat{G}}\left(X_{\lambda}\right)
$$

Vogan's LLC

- We get the equivalent category $\operatorname{Per}_{\widehat{G}}\left(X_{\lambda}\right)$ via the base change

$$
X_{\lambda}:=\widehat{G} \times_{H_{\lambda}} V_{\lambda}
$$

- For any A belian category \mathcal{A}, let $\operatorname{Irr}(\mathcal{A})$ be the set of all isomorphism classes of simple objects.
- Vogan's LLC is then a canonical bijection between the finite sets

$$
\operatorname{Irr}\left(\operatorname{Rep}_{\chi}(G)\right) \equiv \operatorname{Irr}\left(\operatorname{Per}_{\widehat{G}}\left(X_{\lambda}\right)\right)^{\circ}
$$

- That being said, what should we make of the categories themselves?

Generalised Steinberg Representations

- From now on, let G be split semisimple.

Definition

The generalised Steinberg representations of G are those irreps given by

$$
\sigma_{P}:=\operatorname{Ind}_{P}^{G}\left(\mathbb{1}_{M_{P}}\right) / \sum_{P \subsetneq Q} \operatorname{Ind}_{Q}^{G}\left(\mathbb{1}_{M_{Q}}\right)
$$

for a parabolic subgroup $P \subset G$, and associated Levi M_{P}.

- In particular, they are in bijection with the parabolics of G (after fixing a Borel, up to equivalence).
- These irreps are collected by the central character

$$
\chi: Z(\operatorname{Rep}(G)) \rightarrow \mathbb{C} ; \quad f\left(x_{0}, \ldots, x_{n}\right) \mapsto f\left(q^{(n-1) / 2}, \ldots, q^{(1-n) / 2}\right)
$$

Properties of σ_{P}

- The irrep σ_{T} is the usual Steinberg representation, and σ_{G} is the trivial representation of G.
- They give all isomorphism classes of those irreps π so that the group

$$
H^{\bullet}(G, \pi)=\operatorname{Ext}_{G}^{\bullet}\left(\mathbb{1}_{G}, \pi\right)
$$

is non-trivial (this is another characterisation of the generalised Steinberg representations).

The Yoneda Algebra for Steinberg Representations

- Let Σ be the direct sum of all generalised Steinberg representations.
- Following [5] and [2], we have

$$
\operatorname{Ext}_{G}^{i}\left(\sigma_{P_{I}}, \sigma_{P_{J}}\right)= \begin{cases}\mathbb{C} & \text { if } \quad i=|I \cup J|-|I \cap J| \\ 0 & \text { otherwise } .\end{cases}
$$

where P_{I} is meant to denote the parabolic associated with $I \subset R^{+}$, where R^{+}is the set of positive simple roots associated with G.

- It will often be easier to write $\sigma_{l}=\sigma_{P_{l}}$.
- Furthermore, there is the perfect pairing

$$
\operatorname{Ext}_{G}^{i}\left(\sigma_{I}, \sigma_{J}\right) \otimes \operatorname{Ext}_{G}^{j}\left(\sigma_{J}, \sigma_{K}\right) \rightarrow \operatorname{Ext}_{G}^{i+j}\left(\sigma_{I}, \sigma_{K}\right)
$$

- This gives the structure of the algebra $\operatorname{Ext}_{G}^{\bullet}(\Sigma, \Sigma)$.

Example: $R^{+}=\left\{\alpha_{0}, \alpha_{1}\right\}$

- Now consider the case with only two simple roots $R^{+}=\left\{\alpha_{0}, \alpha_{1}\right\}$.
- In this case, the category $\operatorname{Mod}\left(\operatorname{Ext}_{G}^{\bullet}(\Sigma, \Sigma)\right)$ is equivalent to the representations of the quiver

- Relations: Any non-trivial cycle is equal to zero and all "diagrams commute".
- In general, the quiver will be a double quiver given by a hypercube, with the same relations.

The Vogan Variety for the Steinberg Case

- Assuming that $\left|R^{+}\right|=n-1$, the associated Vogan variety is given by

$$
V_{\lambda}=\left\{\left.\left(\begin{array}{ccccc}
0 & x_{1} & 0 & \ldots & 0 \\
0 & 0 & x_{2} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & x_{n-1} \\
0 & 0 & 0 & \ldots & 0
\end{array}\right) \right\rvert\, x_{i} \in \mathbb{C}\right\} \subset \operatorname{Lie}(\hat{G}) ; \quad H_{\lambda} \cong \widehat{T}
$$

The action is given on each coordinate of V by $g \cdot x_{i}=\alpha_{i}(g) x_{i}$.

- The H_{λ} orbits of V_{λ} are in bijection with subsets of R^{+}and of the form

$$
C_{I} \cong C_{l}^{1} \times C_{l}^{2} \times \cdots \times C_{l}^{n}
$$

where $C_{I}^{i} \cong\{0\}$ if $\alpha_{i} \in I$ and $C_{I}^{i} \cong \operatorname{Spec} \mathbb{C}[x]_{\times}$otherwise.

Simple objects of $\operatorname{Per}_{H_{\lambda}}\left(V_{\lambda}\right)^{\circ}$

- These orbits are in bijection with the subsets $I \subset R^{+}$.
- Thus, the simple objects of $\operatorname{Per}_{H_{\lambda}}\left(V_{\lambda}\right)^{\circ}$ are all of the form

$$
\operatorname{IC}\left(\mathbb{1}_{C_{l}}\right):={ }^{\prime} i_{*}^{\prime}{ }^{\prime} j_{!*} \mathbb{1}_{C_{l}}\left[\operatorname{dim} C_{l}\right] \cong{ }^{\prime} i_{*} \mathbb{1}_{\bar{C}_{l}}\left[\operatorname{dim} C_{l}\right]
$$

where

$$
C_{I} \longmapsto{ }^{\prime_{j}} \bar{C}_{1} \longmapsto{ }^{I_{i}}
$$

and where ${ }^{l} j_{!*} \mathbb{1}_{C_{l}} \cong \mathbb{1}_{\bar{C}_{l}}\left[\operatorname{dim} C_{l}\right]$ since ${ }^{\prime} j$ is smooth.

- In particular, the Langlands correspondence is given by the map

$$
\sigma \mapsto \mathrm{IC}\left(\mathbb{1}_{c_{l}}\right)
$$

Calculating extensions between simple objects

- For a pair of subsets $I, J \subset R^{+}$, which to calculate in $D_{H}^{b}\left(V_{\lambda}\right)$

$$
\operatorname{Ext}_{H}^{k}\left(\operatorname{IC}\left(\mathbb{1}_{C_{l}}\right), \operatorname{IC}\left(\mathbb{1}_{C_{J}}\right)\right):=\operatorname{Hom}_{H}\left({ }^{l} i_{*} \mathbb{1}_{\bar{c}_{l}}\left[d_{l}\right],{ }^{J} i_{*} \mathbb{1}_{\bar{C}_{J}}\left[d_{J}+k\right]\right),
$$

where $d_{l}:=\operatorname{dim} C_{l}$ for any $I \subset R^{+}$.

- Since there is a fully-faitful forgetful functor $D_{H}^{b}\left(V_{\lambda}\right) \rightarrow D_{c}^{b}\left(V_{\lambda}\right)$, we have

$$
\operatorname{Ext}_{V_{\lambda}}\left(\operatorname{IC}\left(\mathbb{1}_{C_{l}}\right), \operatorname{IC}\left(\mathbb{1}_{C_{J}}\right)\right) \cong \operatorname{Hom}_{D\left(v_{\lambda}\right)}\left({ }^{l} i_{*} \mathbb{1}_{\bar{C}_{l}}\left[d_{l}\right],{ }^{J} i_{*} \mathbb{1}_{\bar{C}_{J}}\left[d_{J}+k\right]\right)
$$

i.e., we can perform the calculation in $D_{c}^{b}\left(V_{\lambda}\right)$.

Calculating extensions between simple objects (cont.)

- For any subvarieties $W, Y \subset V$, it is easy to see that

$$
\left.\mathbb{1}_{W}\right|_{Y} \cong \mathbb{1}_{W \cap Y}
$$

and that $\bar{C}_{I} \cap \bar{C}_{J}=\bar{C}_{I \cup J}$.

- Hence, using the adjoint $i^{*} \dashv i_{*}$ we have

$$
\begin{aligned}
& \operatorname{Hom}_{D\left(v_{\lambda}\right)}\left({ }^{l} i_{*} \mathbb{1}_{\bar{C}_{l}}\left[d_{l}\right],{ }^{J} i_{*} \mathbb{1}_{\bar{C}_{J}}\left[d_{J}+k\right]\right) \\
& \cong \operatorname{Hom}_{D\left(\bar{C}_{J}\right)}\left({ }^{J} i^{* l} i_{*} \mathbb{1}_{\bar{C}_{l}}\left[d_{l}\right], \mathbb{1}_{\bar{C}_{J}}\left[d_{J}+k\right]\right) \\
& \cong \operatorname{Hom}_{D\left(\bar{C}_{J}\right)}\left({ }^{\prime \cup J}{ }_{\left.i_{*} \mathbb{1}_{\bar{C}_{l J}}\left[d_{l}\right], \mathbb{1}_{\bar{C}_{J}}\left[d_{J}+k\right]\right)}\right.
\end{aligned}
$$

Calculating extensions between simple objects (cont.)

- For any (shifted) local system $\mathcal{L}[k] \in \operatorname{Loc}(C)[k]$, its Verdier dual is given by

$$
\mathbb{D}(\mathcal{L}[k]) \cong \mathcal{L}^{*}[2 \operatorname{dim} C-k]
$$

and is compatible with the six functor formalism.

- Using Verdier duality in our homset, we get

$$
\begin{aligned}
& \operatorname{Hom}_{D\left(\bar{C}_{J}\right)}\left({ }^{\prime \cup J}{ }_{\left.i_{*} \mathbb{1}_{\bar{C}_{I \cup J}}\left[d_{l}\right], \mathbb{1}_{\bar{C}_{J}}\left[d_{J}+k\right]\right)}\right. \\
& \cong \operatorname{Hom}_{D\left(\bar{c}_{J}\right)}\left(\mathbb{D}_{\mathbb{C}_{J}}\left[d_{J}+k\right], \mathbb{D}^{\prime \cup J}{ }_{\left.i_{*} \mathbb{1}_{\bar{C}_{\prime \cup J}}\left[d_{l}\right]\right)}\right. \\
& \cong \operatorname{Hom}_{D\left(\bar{C}_{J}\right)}\left(\mathbb{1}_{\bar{C}_{J}}\left[2 d_{j}-d_{j}-k\right],{ }^{\prime \cup J}{i_{*}} \mathbb{C}_{\bar{C}_{I \cup J}}\left[2 d_{I \cup J}-d_{l}\right]\right) \\
& =\operatorname{Hom}_{D\left(\bar{C}_{J}\right)}\left(\mathbb{1}_{\bar{C}_{J}}\left[d_{j}-k\right],{ }^{\prime \cup J}{ }_{\left.i_{*} \mathbb{1}_{\bar{C}_{I \cup J}}\left[2 d_{l \cup J}-d_{l}\right]\right)}\right.
\end{aligned}
$$

Calculating extensions between simple objects (cont.)

- Again using the adjoint $i^{*} \dashv i_{*}$, we get

$$
\begin{aligned}
\operatorname{Hom}_{D\left(\bar{C}_{J}\right)}\left(\mathbb{1}_{\bar{C}_{J}}\left[d_{j}-k\right],{ }^{\prime \cup J}{ }_{\left.i_{*} \mathbb{1}_{\bar{C}_{I \cup J}}\left[2 d_{I \cup J}-d_{l}\right]\right)}\right. & \cong \operatorname{Hom}_{D\left(\bar{c}_{I \cup J)}\right)}\left({ }^{\prime \cup J}{ }_{i^{*}} \mathbb{1}_{\bar{C}_{J}}\left[d_{j}-k\right], \mathbb{1}_{\bar{c}_{I \cup J}}\left[2 d_{I \cup J}-d_{l}\right]\right) \\
& \cong \operatorname{Hom}_{D\left(\bar{c}_{I \cup J)}\right.}\left(\mathbb{1}_{\bar{C}_{I \cup J}}\left[d_{j}-k\right], \mathbb{1}_{\bar{c}_{I \cup J}}\left[2 d_{I \cup J}-d_{l}\right]\right)
\end{aligned}
$$

- Thus, we get that $\operatorname{Ext}_{H}^{n}\left(\operatorname{IC}\left(\mathbb{1}_{C_{I}}\right), \mathrm{IC}\left(\mathbb{1}_{C_{J}}\right)\right)=0$ unless

$$
k=d_{l}+d_{J}-2 d_{l \cup J}
$$

which is easily calculated to be

$$
d_{I}+d_{J}-2 d_{I \cup J}=|I \cup J|-|I \cap J|
$$

Main result

- Thus, by the equivalence $D_{H_{\lambda}}^{b}\left(V_{\lambda}\right) \simeq D_{\widehat{G}}^{b}\left(X_{\lambda}\right)$, we get the following theorem:

Theorem (S.)

Let Σ denote the direct sum of all generalized Steinberg representations σ_{l}, let X_{λ} its corresponding Vogan variety, and let $\mathcal{I C}$ the direct sum of all representations of the form $I C\left(\mathbb{1}_{C_{1}}\right) \in \operatorname{Per}_{\widehat{G}}\left(X_{\lambda}\right)$. Then, there is an isomorphism of Yoneda algebras

$$
E x t_{G}^{\bullet}(\Sigma, \Sigma) \cong E x t_{\widehat{G}}^{\bullet}(\mathcal{I C}, \mathcal{I C})
$$

Complimentary results

- The extensions of perverse sheaves, in fact, gives a full description of the category

$$
\operatorname{Mod}\left(\operatorname{Ext}_{H_{\lambda}}(\mathcal{I C}, \mathcal{I C})\right) \simeq \operatorname{Per}_{H_{\lambda}}\left(V_{\lambda}\right)^{\circ}
$$

- The Aubert dual and Fourier transform of $\sigma_{l} \mapsto I C\left(\mathbb{1}_{C_{l}}\right)$ give

$$
\operatorname{Au}\left(\sigma_{l}\right) \cong \sigma_{l c} \quad \operatorname{Ft}\left(\operatorname{IC}\left(\mathbb{1}_{c_{l}}\right)\right) \cong \operatorname{IC}\left(\mathbb{1}_{c_{l c}}\right)
$$

where $I^{c}=R^{+} \backslash I$. The involutions are thus compatible and we have a Cartesian square

Thank you

Thank You!

References

围 Beilinson，Ginzburg，Soergel，
Koszul duality patterns in representation theory，Progress in Mathematics，vol．104，Birkhauser Boston，Inc．，Boston，MA， 1992.
（ Assem，Simson，Skowronksi Elements of the Representation Theory of Associative Algebras，Cambridge University Press， 2006.
圊 Chriss and Ginzburg，Representation theory and complex geometry， Modern Birkhauser Classics，Birkhauser Boston，Ltd．，Boston，MA， 2010．Reprint of 1997 edition．
围 Cunningham，Fiori，Massaoui，Mracek，and Xu，Arthur packets for p－adic groups by way of microlocal vanishing cycles of perverse sheaves，with examples，Mem．Amer．Math．Soc． 276 （2022），no． 1353.

Dat，Espaces symetriques de Drinfeld et correspondance de Langlands locale，Ann．Sci．Ecole Norm．Sup．（4） 39 （2006），no．1，pp．1－74．

References (cont.)

Ryubashenko, Tensor products of categories of equivariant perverse sheaves, cahiers de topologie et geometrie differentielle categoriques, tome 43, no. 1, pp. 49-79 (2002)

Orlik, On extensions of generalized Steinberg representations, J. Algebra 293 (2005), no. 2, 611-630.

Soergel, Langlands' philosophy and Koszul duality, Algebra representation theory (Constanta, 2000), NATO Sci. Ser. II Math. Phys. Chem., vol. 28, Kluwer Acad. Publ., Dordrecht, 2001, pp. 379-414
固 Vogan, The local Langlands conjecture, Representation theory of groups and algebras, Contemp. Math., vol. 145, Amer. Math. Soc., Providence, RI, 1993, pp. 305-379.

囦 Vooys, Equivariant functors and sheaves, (2021). PhD. thesis, available at https://doi.org/10.48550/arXiv.2110.01130

Identifying the principle block $\operatorname{Per}_{H}(V)^{\circ}$.

- There is a surjective homomorphism of algebraic groups given by

$$
f: H \rightarrow \mathbb{G}^{n} ; \quad t \mapsto\left(\alpha_{1}(t), \alpha_{2}(t), \ldots, \alpha_{n}(t)\right)
$$

- So that the following diagram commutes:

- Then, if $\mathcal{F} \in \operatorname{Per}_{\mathbb{G}_{m}^{n}}(V)$, then there is an isomorphism $\varepsilon: m^{*} \mathcal{F} \xrightarrow{\sim} p^{*} \mathcal{F}$. Then, $(f \times 1)^{*} \varepsilon$ provides and isomorphism $a^{*} \mathcal{F} \cong p^{*} \mathcal{F}$, showing that $\mathcal{F} \in \operatorname{Per}_{H}(V)$.
- Further, this embedding is fully-faithful since both groups are connected, and is Serre since f is affine.
- Set $\operatorname{Per}_{H}(V)^{\circ}:=\operatorname{Per}_{\mathbb{G}_{m}^{n-1}}(V)$.

