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The Langlands Philosophy and L-functions

From automorphic representations to Galois representations:

π ∈ Irr(G (AQ)) ϕ ∈ Irr(Gal(Q/Q))

L(π, s) L(ϕ, s)

The L-function breaks up according to local fields:

L(s, π) =
∏

⟨p⟩SpecZ

L(s, π|Qp)

with Qp
∼= R when p = ⟨0⟩, and the p-adic numbers otherwise.

Indeed,
π ∼=

⊗
⟨p⟩SpecZ

πp

James Steele LLD March 22, 2024 2 / 22



Vogan’s Conception of the Local Langlands
Correspondence (LLC)

The classical conception: a finite-to-one map
Smooth, irreducible
C-representations of

G = G (F )

 ↠


Admissible group

homomorphisms W ′
F → LG

(Langlands Parameters)


Vogan’s reinterpretation: a bijection

Smooth, irreducible
C-representations of
G = G (F ) with

central character χ

 ↭


Simple, equivariant,
perverse sheaves in

Per
Ĝ
(Xλ)

◦


We call the left-hand-side the spectral side, and the right-hand-side
the geometric side.
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The Spectral Category

Recall that the Bernstein centre of G is the ring

Z (Rep(G )) := End(1Rep(G)),

the endomorphism algebra of the identity endofunctor on Rep(G ).

The Bernstein centre acts on any irrep via a central character

χ : Z (Rep(G )) → C

Only finitely many isomorphism classes of irreps share any given χ.

The spectral category is then

Mod(Ext•G (Σ,Σ))

where Σ is the direct sum of a representative from each isomorphism
class of these irreducibles.
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The Geometric Category

A restricted Langlands correspondence gives a map χ 7→ λ,

λ : WF −→ LG := Ĝ ⋊WF

is an infinitesimal parameter.

We then define the Vogan variety, given by

Vλ := {x ∈ Lie(Ĝ ) | λ(w) x λ(w)−1 = |w |F x , ∀w ∈ WF}

equipped with an action of the algebraic group

Hλ := {g ∈ Ĝ | λ(w) g λ(w)−1 = g , ∀w ∈ WF}

We then consider the indecomposable Abelian subcategory of
Hλ-equivariant perverse sheaves on Vλ whose simple objects are in
bijection with the L-packets attached to χ, up to equivalence, and we
have

PerHλ
(Vλ)

◦ ↪→ PerHλ
(Vλ) ≃ Per

Ĝ
(Xλ)
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Vogan’s LLC

We get the equivalent category Per
Ĝ
(Xλ) via the base change

Xλ := Ĝ ×Hλ
Vλ

For any Abelian category A, let Irr(A) be the set of all isomorphism
classes of simple objects.

Vogan’s LLC is then a canonical bijection between the finite sets

Irr(Repχ(G )) ≡ Irr(Per
Ĝ
(Xλ))

◦

That being said, what should we make of the categories themselves?
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Generalised Steinberg Representations

From now on, let G be split semisimple.

Definition

The generalised Steinberg representations of G are those irreps given
by

σP := IndGP (1MP
)/

∑
P⊊Q

IndGQ(1MQ
)

for a parabolic subgroup P ⊂ G , and associated Levi MP .

In particular, they are in bijection with the parabolics of G (after
fixing a Borel, up to equivalence).

These irreps are collected by the central character

χ : Z (Rep(G )) → C; f (x0, . . . , xn) 7→ f (q(n−1)/2, . . . , q(1−n)/2).
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Properties of σP

The irrep σT is the usual Steinberg representation, and σG is the
trivial representation of G .

They give all isomorphism classes of those irreps π so that the group

H•(G , π) = Ext•G (1G , π)

is non-trivial (this is another characterisation of the generalised
Steinberg representations).
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The Yoneda Algebra for Steinberg Representations

Let Σ be the direct sum of all generalised Steinberg representations.

Following [5] and [2], we have

ExtiG (σPI
, σPJ

) =

{
C if i = |I ∪ J| − |I ∩ J|
0 otherwise.

where PI is meant to denote the parabolic associated with I ⊂ R+,
where R+ is the set of positive simple roots associated with G .

It will often be easier to write σI = σPI
.

Furthermore, there is the perfect pairing

ExtiG (σI , σJ)⊗ ExtjG (σJ , σK ) → Exti+j
G (σI , σK )

This gives the structure of the algebra Ext•G (Σ,Σ).
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Example: R+ = {α0, α1}

Now consider the case with only two simple roots R+ = {α0, α1}.
In this case, the category Mod(Ext•G (Σ,Σ)) is equivalent to the
representations of the quiver

{α0, α1}

{α0} {α1}

∅

Relations: Any non-trivial cycle is equal to zero and all “diagrams
commute”.

In general, the quiver will be a double quiver given by a hypercube,
with the same relations.
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The Vogan Variety for the Steinberg Case

Assuming that |R+| = n − 1, the associated Vogan variety is given by

Vλ =




0 x1 0 . . . 0
0 0 x2 . . . 0
...

...
...

. . .
...

0 0 0 . . . xn−1

0 0 0 . . . 0

 | xi ∈ C


⊂ Lie(Ĝ ); Hλ

∼= T̂

The action is given on each coordinate of V by g · xi = αi (g)xi .

The Hλ orbits of Vλ are in bijection with subsets of R+ and of the
form

CI
∼= C 1

I × C 2
I × · · · × Cn

I

where C i
I
∼= {0} if αi ∈ I and C i

I
∼= SpecC[x ]x otherwise.
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Simple objects of PerHλ
(Vλ)

◦

These orbits are in bijection with the subsets I ⊂ R+.

Thus, the simple objects of PerHλ
(Vλ)

◦ are all of the form

IC(1CI
) := I i∗

I j!∗1CI
[dimCI ] ∼= I i∗1C I

[dimCI ],

where

CI C I Vλ

I j I i

and where I j!∗1CI
∼= 1C I

[dim CI ] since
I j is smooth.

In particular, the Langlands correspondence is given by the map

σ 7→ IC(1CI
)
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Calculating extensions between simple objects

For a pair of subsets I , J ⊂ R+, which to calculate in Db
H(Vλ)

ExtkH(IC(1CI
), IC(1CJ

)) := HomH(
I i∗1C I

[dI ],
J i∗1C J

[dJ + k]),

where dI := dimCI for any I ⊂ R+.

Since there is a fully-faitful forgetful functor Db
H(Vλ) → Db

c (Vλ), we
have

ExtVλ
(IC(1CI

), IC(1CJ
)) ∼= HomD(Vλ)(

I i∗1C I
[dI ],

J i∗1C J
[dJ + k])

i.e., we can perform the calculation in Db
c (Vλ).
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Calculating extensions between simple objects (cont.)

For any subvarieties W ,Y ⊂ V , it is easy to see that

1W |Y ∼= 1W∩Y

and that C I ∩ C J = C I∪J .

Hence, using the adjoint i∗ ⊣ i∗ we have

HomD(Vλ)(
I i∗1C I

[dI ],
J i∗1C J

[dJ + k])

∼= HomD(C J)
(J i∗I i∗1C I

[dI ],1C J
[dJ + k])

∼= HomD(C J)
(I∪J i∗1C I∪J

[dI ],1C J
[dJ + k])
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Calculating extensions between simple objects (cont.)

For any (shifted) local system L[k] ∈ Loc(C )[k], its Verdier dual is
given by

D(L[k]) ∼= L∗[2 dimC − k],

and is compatible with the six functor formalism.

Using Verdier duality in our homset, we get

HomD(C J)
(I∪J i∗1C I∪J

[dI ],1C J
[dJ + k])

∼= HomD(C J)
(D1C J

[dJ + k],DI∪J i∗1C I∪J
[dI ])

∼= HomD(C J)
(1C J

[2dj − dj − k], I∪J i∗1C I∪J
[2dI∪J − dI ])

= HomD(C J)
(1C J

[dj − k], I∪J i∗1C I∪J
[2dI∪J − dI ])
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Calculating extensions between simple objects (cont.)

Again using the adjoint i∗ ⊣ i∗, we get

HomD(C J)
(1C J

[dj − k], I∪J i∗1C I∪J
[2dI∪J − dI ])

∼= HomD(C I∪J)
(I∪J i∗1C J

[dj − k],1C I∪J
[2dI∪J − dI ])

∼= HomD(C I∪J)
(1C I∪J

[dj − k],1C I∪J
[2dI∪J − dI ])

Thus, we get that ExtnH(IC(1CI
), IC(1CJ

)) = 0 unless

k = dI + dJ − 2dI∪J

which is easily calculated to be

dI + dJ − 2dI∪J = |I ∪ J| − |I ∩ J|
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Main result

Thus, by the equivalence Db
Hλ

(Vλ) ≃ Db
Ĝ
(Xλ), we get the following

theorem:

Theorem (S.)

Let Σ denote the direct sum of all generalized Steinberg representations
σI , let Xλ its corresponding Vogan variety, and let IC the direct sum of all
representations of the form IC(1CI

) ∈ Per
Ĝ
(Xλ). Then, there is an

isomorphism of Yoneda algebras

Ext•G (Σ,Σ)
∼= Ext•

Ĝ
(IC, IC)
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Complimentary results

The extensions of perverse sheaves, in fact, gives a full description of
the category

Mod(Ext•Hλ
(IC, IC)) ≃ PerHλ

(Vλ)
◦

The Aubert dual and Fourier transform of σI 7→ IC(1CI
) give

Au(σI ) ∼= σI c Ft (IC(1CI
)) ∼= IC(1CI c

)

where I c = R+ \ I . The involutions are thus compatible and we have
a Cartesian square

Ext•G (Σ,Σ) Ext•
Ĝ
(IC, IC)

Ext•G (FtΣ,FtΣ) Ext•
Ĝ
(Au IC,Au IC)

∼

Ft Au

∼

James Steele LLD March 22, 2024 18 / 22



Thank you

Thank You!
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Identifying the principle block PerH(V )◦.

There is a surjective homomorphism of algebraic groups given by

f : H → Gn; t 7→ (α1(t), α2(t), . . . , αn(t))

So that the following diagram commutes:

H × V Gn−1
m × V

V

a

f×1

m

Then, if F ∈ PerGn
m
(V ), then there is an isomorphism

ε : m∗F ∼−→ p∗F . Then, (f × 1)∗ε provides and isomorphism
a∗F ∼= p∗F , showing that F ∈ PerH(V ).

Further, this embedding is fully-faithful since both groups are
connected, and is Serre since f is affine.

Set PerH(V )◦ := PerGn−1
m

(V ).
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