Alberta Number Theory Day 2024

Well-rounded ideal lattices of cyclic cubic and quartic fields

Ha Tran

Concordia University of Edmonton joint work with Nam Le and Dat Tran

イロン イロン イヨン イヨン 三日

1/24

Content

Premilinaries

Lattices and ideal lattices Well-rounded (WR) lattices Well-rounded ideal lattices

- Why WR (ideal) lattices?
- What have been done?
- Our strategies
- Our main results
- A conjecture

Notations

Let F be a number field with degree n, discriminant ∆ and the ring of integers O_F. For simplicity, assume that F is totally real.

Notations

- Let F be a number field with degree n, discriminant Δ and the ring of integers O_F. For simplicity, assume that F is totally real.
- Let $\sigma_1, \ldots, \sigma_n$ be *n* embeddings of *F*.

Notations

- Let F be a number field with degree n, discriminant Δ and the ring of integers O_F. For simplicity, assume that F is totally real.
- Let $\sigma_1, \ldots, \sigma_n$ be *n* embeddings of *F*.

• Denote by
$$\Phi = (\sigma_1, ..., \sigma_n)$$
. Then

 $\Phi: F \hookrightarrow \mathbb{R}^n$ takes $x \in F$ to $(\sigma_i(x))_i$.

Lattices

Let $\mathcal{B} = \{v_1, v_2, ..., v_m\}$ be a linearly independent set of vectors in \mathbb{R}^n .

- $L = \{\sum_{i=1}^{m} a_i v_i | a_i \in \mathbb{Z}\}$ is called a lattice in \mathbb{R}^n of rank m.
- ▶ \mathcal{B} is said to be a basis of L, we write $L = \langle \mathcal{B} \rangle$.

ln case m = n, we say that L is full rank.

Ex:
$$F = \mathbb{Q}(\sqrt{3})$$
 has 2
embeddings:
 $\sigma_1(a + b\sqrt{3}) = a + b\sqrt{3}$ and
 $\sigma_2(a + b\sqrt{3}) = a - b\sqrt{3}$.

¹It can be defined more general.

Ex:
$$F = \mathbb{Q}(\sqrt{3})$$
 has 2
embeddings:
 $\sigma_1(a + b\sqrt{3}) = a + b\sqrt{3}$ and
 $\sigma_2(a + b\sqrt{3}) = a - b\sqrt{3}$.
The ideal $I = \langle 2, 1 - \sqrt{3} \rangle_{\mathbb{Z}}$.

¹It can be defined more general.

Ex:
$$F = \mathbb{Q}(\sqrt{3})$$
 has 2
embeddings:
 $\sigma_1(a + b\sqrt{3}) = a + b\sqrt{3}$ and
 $\sigma_2(a + b\sqrt{3}) = a - b\sqrt{3}$.
The ideal $I = \langle 2, 1 - \sqrt{3} \rangle_{\mathbb{Z}}$.
 $b_1 = \Phi(2) = (2, 2)$,
 $b_2 = \Phi(1 - \sqrt{3}) =$
 $(1 - \sqrt{3}, 1 + \sqrt{3})$.

¹It can be defined more general.

Ex:
$$F = \mathbb{Q}(\sqrt{3})$$
 has 2
embeddings:
 $\sigma_1(a + b\sqrt{3}) = a + b\sqrt{3}$ and
 $\sigma_2(a + b\sqrt{3}) = a - b\sqrt{3}$.
The ideal $I = \langle 2, 1 - \sqrt{3} \rangle_{\mathbb{Z}}$.
 $b_1 = \Phi(2) = (2, 2)$,
 $b_2 = \Phi(1 - \sqrt{3}) =$
 $(1 - \sqrt{3}, 1 + \sqrt{3})$.
Then $\Phi(I) = \langle b_1, b_2 \rangle_{\mathbb{Z}}$ is a lattice
in \mathbb{R}^2 .

¹It can be defined more general.

Ex:
$$F = \mathbb{Q}(\sqrt{3})$$
 has 2
embeddings:
 $\sigma_1(a + b\sqrt{3}) = a + b\sqrt{3}$ and
 $\sigma_2(a + b\sqrt{3}) = a - b\sqrt{3}$.
The ideal $I = \langle 2, 1 - \sqrt{3} \rangle_{\mathbb{Z}}$.
 $b_1 = \Phi(2) = (2, 2),$
 $b_2 = \Phi(1 - \sqrt{3}) =$
 $(1 - \sqrt{3}, 1 + \sqrt{3})$.
Then $\Phi(I) = \langle b_1, b_2 \rangle_{\mathbb{Z}}$ is a lattice
in \mathbb{R}^2 .

¹It can be defined more general.

Proposition

Let I be a factional ideal of F. Then $\Phi(I)$ is a lattice in \mathbb{R}^n . We call I an ideal lattice¹ of F.

¹It can be defined more general.

Let *L* be a lattice in \mathbb{R}^n .

- ► $|L| = \min_{0 \neq u \in L} ||u||^2$ is called the minimum norm (length) of L.
- The set of shortest vectors of L is defined as

$$S(L) := \{ u \in L : ||u||^2 = |L| \}.$$

The hexagonal lattice $H = \langle (1,0), (1/2, \sqrt{3}/2) \rangle.$ $|H| = ? \qquad S(H) = ? \qquad S(H) = 0$

 $|L| = \min_{0 \neq u \in L} ||u||^2$

$$S(L) := \{ u \in L : ||u||^2 = |L| \}.$$

 $L = \langle (1,0), (0,2) \rangle.$ $|L| = 1, S(L) = \{\pm(1,0)\}.$

The hexagonal lattice $H = \langle (1,0), (1/2, \sqrt{3}/2) \rangle.$

 $|L| = \min_{0 \neq u \in L} ||u||^2$

$$S(L) := \{ u \in L : ||u||^2 = |L| \}.$$

 $L = \langle (1,0), (0,2) \rangle.$ $|L| = 1, S(L) = \{\pm(1,0)\}.$

The hexagonal lattice $H = \langle (1,0), (1/2, \sqrt{3}/2) \rangle.$ |L| = 1, $S(L) = \{ \pm (1,0), (\pm 1/2, \pm \sqrt{3}/2) \}.$ $_{7/24}$

- Let *L* be a lattice in \mathbb{R}^n .
 - ► L is well-rounded (WR) if S(L) generates Rⁿ, that is, if S(L) contains n linearly independent vectors.
 - ► L is said strongly WR if S(L) consists of a basis of L. We call this basis a minimal basis of L.

- Let *L* be a lattice in \mathbb{R}^n .
 - L is well-rounded (WR) if S(L) generates ℝⁿ, that is, if S(L) contains n linearly independent vectors.
 - ► L is said strongly WR if S(L) consists of a basis of L. We call this basis a minimal basis of L.

When $n \leq 3$ WRness and strong WRness are equivalent.

Well-rounded ideal lattices

An ideal I of a number field F is called WR if the lattice Φ(I) is WR.

Ex: $F = \mathbb{Q}(\sqrt{3})$. The ideal $I = \langle 2, 1 - \sqrt{3} \rangle_{\mathbb{Z}}$ is WR since $\Phi(I) = \langle b_1, b_2 \rangle_{\mathbb{Z}}$ is WR here $b_1 = (2, 2),$ $b_2 = (1 - \sqrt{3}, 1 + \sqrt{3}).$

Why WR (ideal) lattices?

- Many well known lattices are WR: *E*₈, the Leech lattice, etc.
- ▶ WR ideal lattices can be used to investigate various problems:
 - the shortest vector problem,
 - kissing numbers,
 - sphere packing problems, etc.

The Leech lattice (Gro-Tsen)

Why WR (ideal) lattices?

Why WR (ideal) lattices?

WR ideal lattices also offer a variety of applications to coding theory.

A wiretap fading channel.

Why WR (ideal) lattices?

Why WR (ideal) lattices?

WR ideal lattices also offer a variety of applications to coding theory.

A wiretap fading channel.

WR ideal lattices can be used to reduce the value of the average probability of the correct decoding for the eavesdropper.

Fukshanksy et al.: i) the ring of integer is WR if and only if the field is cyclotomic; ii) sufficient conditions for an ideal of quadratic fields to be WR, the necessary condition is then proven by Srinivasan.

- Fukshanksy et al.: i) the ring of integer is WR if and only if the field is cyclotomic; ii) sufficient conditions for an ideal of quadratic fields to be WR, the necessary condition is then proven by Srinivasan.
- Araujo and Costa: On WR lattices (but not necessarily for WR ideals) of cyclic fields with odd prime degrees.

- Fukshanksy et al.: i) the ring of integer is WR if and only if the field is cyclotomic; ii) sufficient conditions for an ideal of quadratic fields to be WR, the necessary condition is then proven by Srinivasan.
- Araujo and Costa: On WR lattices (but not necessarily for WR ideals) of cyclic fields with odd prime degrees.
- Damir and Mantilla-Soler: construct a parametric family of WR sub-lattices of a tame lattice with a Lagrangian basis.

- Fukshanksy et al.: i) the ring of integer is WR if and only if the field is cyclotomic; ii) sufficient conditions for an ideal of quadratic fields to be WR, the necessary condition is then proven by Srinivasan.
- Araujo and Costa: On WR lattices (but not necessarily for WR ideals) of cyclic fields with odd prime degrees.
- Damir and Mantilla-Soler: construct a parametric family of WR sub-lattices of a tame lattice with a Lagrangian basis.
- Solan: for any lattice L there exists a diagonal real matrix D (called a twist) with positive entries and det(D) = 1 such that DL is WR.

- Fukshanksy et al.: i) the ring of integer is WR if and only if the field is cyclotomic; ii) sufficient conditions for an ideal of quadratic fields to be WR, the necessary condition is then proven by Srinivasan.
- Araujo and Costa: On WR lattices (but not necessarily for WR ideals) of cyclic fields with odd prime degrees.
- Damir and Mantilla-Soler: construct a parametric family of WR sub-lattices of a tame lattice with a Lagrangian basis.
- Solan: for any lattice L there exists a diagonal real matrix D (called a twist) with positive entries and det(D) = 1 such that DL is WR.
- WR twists of ideal lattices of real quadratic fields are investigated by Damir and Karpuk, and of imaginary fields by Le, Tran and Tran.

- Fukshanksy et al.: i) the ring of integer is WR if and only if the field is cyclotomic; ii) sufficient conditions for an ideal of quadratic fields to be WR, the necessary condition is then proven by Srinivasan.
- Araujo and Costa: On WR lattices (but not necessarily for WR ideals) of cyclic fields with odd prime degrees.
- Damir and Mantilla-Soler: construct a parametric family of WR sub-lattices of a tame lattice with a Lagrangian basis.
- Solan: for any lattice L there exists a diagonal real matrix D (called a twist) with positive entries and det(D) = 1 such that DL is WR.
- WR twists of ideal lattices of real quadratic fields are investigated by Damir and Karpuk, and of imaginary fields by Le, Tran and Tran.
- Gnilke et al. and Damir et al.: analyses of some WR lattices used in wiretap channels, and Damir et al.: use WR lattices to optimize coset codes for Gaussian and fading wiretap channels.

- Fukshanksy et al.: i) the ring of integer is WR if and only if the field is cyclotomic; ii) sufficient conditions for an ideal of quadratic fields to be WR, the necessary condition is then proven by Srinivasan.
- Araujo and Costa: On WR lattices (but not necessarily for WR ideals) of cyclic fields with odd prime degrees.
- Damir and Mantilla-Soler: construct a parametric family of WR sub-lattices of a tame lattice with a Lagrangian basis.
- Solan: for any lattice L there exists a diagonal real matrix D (called a twist) with positive entries and det(D) = 1 such that DL is WR.
- WR twists of ideal lattices of real quadratic fields are investigated by Damir and Karpuk, and of imaginary fields by Le, Tran and Tran.
- Gnilke et al. and Damir et al.: analyses of some WR lattices used in wiretap channels, and Damir et al.: use WR lattices to optimize coset codes for Gaussian and fading wiretap channels.

This talk: WR ideal lattices for cyclic cubic and quartic fields.

Why cyclic cucbic and quartic fields?

Let F be a cyclic cubic field with discriminant Δ_F and Galois group $Gal(F) = \langle \sigma \rangle$.

- If a prime $p|\Delta_F$, then $pO_F = P^3$ for a unique prime ideal P and $\sigma^i(P) = P$ for $i \in \{0, 1, 2\}$.
- If x is a shortest vector in P and the set {σⁱ(x) : 0 ≤ i ≤ 2} is linearly independent then P is WR.

Why cyclic cucbic and quartic fields?

Let F be a cyclic cubic field with discriminant Δ_F and Galois group $Gal(F) = \langle \sigma \rangle$.

- If a prime $p|\Delta_F$, then $pO_F = P^3$ for a unique prime ideal P and $\sigma^i(P) = P$ for $i \in \{0, 1, 2\}$.
- If x is a shortest vector in P and the set {σⁱ(x) : 0 ≤ i ≤ 2} is linearly independent then P is WR.

Similar idea for:

- ▶ ideals of the form ∏_i P_i^{m_i} where P_i is the unique ramified prime ideal obove some prime p, and
- cyclic quartic fields with some modifications.

Why cyclic cucbic and quartic fields?

Let F be a cyclic cubic field with discriminant Δ_F and Galois group $Gal(F) = \langle \sigma \rangle$.

- If a prime $p|\Delta_F$, then $pO_F = P^3$ for a unique prime ideal P and $\sigma^i(P) = P$ for $i \in \{0, 1, 2\}$.
- If x is a shortest vector in P and the set {σⁱ(x) : 0 ≤ i ≤ 2} is linearly independent then P is WR.

Similar idea for:

- ▶ ideals of the form ∏_i P_i^{m_i} where P_i is the unique ramified prime ideal obove some prime p, and
- cyclic quartic fields with some modifications.

On the other hand, there are only few defining polynomials of cyclic number fields of degree at least 5 are available.

1. Find the defining polynomials of the field.

- 1. Find the defining polynomials of the field.
- 2. Generate a list of all integral ideals of norms bounded by a certain number.

- 1. Find the defining polynomials of the field.
- 2. Generate a list of all integral ideals of norms bounded by a certain number.
- 3. Test which ideals in the list are WR (using the function qfminim in $\mathsf{Pari}/\mathsf{GP}).$

- 1. Find the defining polynomials of the field.
- 2. Generate a list of all integral ideals of norms bounded by a certain number.
- 3. Test which ideals in the list are WR (using the function qfminim in Pari/GP).
- 4. Examine properties of obtained WR ideals such as the geometry of integral bases, the coordinates of shortest vectors with respect to a given integral basis, etc.

- 1. Find the defining polynomials of the field.
- 2. Generate a list of all integral ideals of norms bounded by a certain number.
- 3. Test which ideals in the list are WR (using the function qfminim in Pari/GP).
- 4. Examine properties of obtained WR ideals such as the geometry of integral bases, the coordinates of shortest vectors with respect to a given integral basis, etc.
- 5. Formulate conjectures.

- 1. Find the defining polynomials of the field.
- 2. Generate a list of all integral ideals of norms bounded by a certain number.
- 3. Test which ideals in the list are WR (using the function qfminim in Pari/GP).
- 4. Examine properties of obtained WR ideals such as the geometry of integral bases, the coordinates of shortest vectors with respect to a given integral basis, etc.
- 5. Formulate conjectures.
- 6. Prove these conjectures.

Our main results

Cyclic cubic fields Let F be a cyclic cubic field with conductor m.

$$m = \frac{a^2 + 3b^2}{4} \tag{1}$$

where $a, b \in \mathbb{Z}$ such that

$$a \equiv 2 \mod 3, b \equiv 0 \mod 3$$
 and $b > 0$ for $3 \not| m$, and (2)
 $a \equiv 6 \mod 9, b \equiv 3$ or $6 \mod 9$ and $b > 0$ for $3 \mid m$.

Cyclic cubic fields Let *F* be a cyclic cubic field with conductor *m*.

$$m = \frac{a^2 + 3b^2}{4} \tag{1}$$

where $a, b \in \mathbb{Z}$ such that

$$a \equiv 2 \mod 3, b \equiv 0 \mod 3$$
 and $b > 0$ for $3 \not| m$, and (2)
 $a \equiv 6 \mod 9, b \equiv 3$ or $6 \mod 9$ and $b > 0$ for $3 \mid m$.

The conductor m has the form

$$m=q_1q_2\cdots q_r,$$

where $r \in \mathbb{Z}_{>0}$ and q_1, \cdots, q_r are distinct integers from the set

 $\{9\} \cup \{q : q \text{ is prime and } q \equiv 1 \mod 3\} = \{7, 9, 13, 19, 31, 37, \dots\}.$

イロン 不通 とうほう うほう しほう

Cyclic cubic fields

Let F be a cyclic cubic field with conductor m.

The discriminant of F is $\Delta_F = m^2$.

Cyclic cubic fields

Let F be a cyclic cubic field with conductor m.

The discriminant of F is $\Delta_F = m^2$. The following polynomial can be used to define F,

$$df(x) = \begin{cases} x^3 - x^2 + \frac{1-m}{3}x - \frac{m(a-3)+1}{27}, & \text{if } 3 \not \mid m \\ x^3 - \frac{m}{3}x - \frac{am}{27}, & \text{if } 3 \mid m \end{cases}.$$
 (3)

Cyclic cubic fields

Let F be a cyclic cubic field with conductor m.

The discriminant of F is $\Delta_F = m^2$. The following polynomial can be used to define F,

$$df(x) = \begin{cases} x^3 - x^2 + \frac{1-m}{3}x - \frac{m(a-3)+1}{27}, & \text{if } 3 \not \mid m \\ x^3 - \frac{m}{3}x - \frac{am}{27}, & \text{if } 3 \mid m \end{cases}.$$
 (3)

Let $m = p_1 \cdots p_r$ or $m = 9 \cdot p_1 \cdots p_r$ here all p_i are distinct prime numbers and $p_i \equiv 1 \mod 3$ for $i = 1, \cdots, r$ and $p_0 = 3$, $p_1 < p_2 < \cdots < p_r$.

Our results: cyclic cubic fields

Theorem 1

Every cyclic cubic field F has orthogonal and WR ideal lattices. In particular, let m be the conductor of F. Then we have the following. i) If $9 \nmid m$, then the unique ideal of norm m^2 is orthogonal and WR. ii) If $9 \mid m$, then the unique ideal of norm $\frac{m^2}{27}$ is orthogonal and WR.

Our results: cyclic cubic fields

Theorem 1

Every cyclic cubic field F has orthogonal and WR ideal lattices. In particular, let m be the conductor of F. Then we have the following. i) If $9 \nmid m$, then the unique ideal of norm m^2 is orthogonal and WR. ii) If $9 \mid m$, then the unique ideal of norm $\frac{m^2}{27}$ is orthogonal and WR.

Theorem 2

Let q be a square-free divisor of the conductor m of a cyclic cubic field F. There is a unique ideal Q of O_F such that N(Q) = q. In this case, Q is WR if and only if $\left(\frac{m}{4} \le q^2 \le 4m \text{ when } 3 \nmid m\right)$ and $\left(3 \mid q, \frac{m}{4} \le q^2 \le 4m \text{ when } 3 \mid m\right)$.

Our results: cyclic cubic fields

Theorem 3

Let $m = 9p_1p_2 \cdots p_r (r \ge 2)$ be the conductor m of a cyclic cubic field Fand q, q' be two coprime divisors of $p_1p_2 \cdots p_r$. The unique ideal of norm $3q^2q'$ is WR if and only if $\frac{m}{36} \le qq'^2 \le \frac{4m}{9}$. Our main results

Cyclic quartic fields

A cyclic quartic field has the form $F = \mathbb{Q}(\beta)$ where $a, b, c, d \in \mathbb{Z}$, a is squarefree and odd, $d = b^2 + c^2$ is squarefree, b > 0, c > 0, gcd(a, d) = 1 and $\beta = \sqrt{a(d - b\sqrt{d})}$.

Cyclic quartic fields

A cyclic quartic field has the form $F = \mathbb{Q}(\beta)$ where $a, b, c, d \in \mathbb{Z}$, a is squarefree and odd, $d = b^2 + c^2$ is squarefree, b > 0, c > 0, gcd(a, d) = 1 and $\beta = \sqrt{a(d - b\sqrt{d})}$.

If a > 0 then F is totally real, and if a < 0 then F is totally imaginary.

Cyclic quartic fields

A cyclic quartic field has the form $F = \mathbb{Q}(\beta)$ where $a, b, c, d \in \mathbb{Z}$, a is squarefree and odd, $d = b^2 + c^2$ is squarefree, b > 0, c > 0, gcd(a, d) = 1 and $\beta = \sqrt{a(d - b\sqrt{d})}$.

If a > 0 then F is totally real, and if a < 0 then F is totally imaginary.

A defining polynomial of F is

$$df(x) = x^4 - 2adx^2 + a^2c^2d.$$

Cyclic quartic fields

A cyclic quartic field has the form $F = \mathbb{Q}(\beta)$ where $a, b, c, d \in \mathbb{Z}$, a is squarefree and odd, $d = b^2 + c^2$ is squarefree, b > 0, c > 0, gcd(a, d) = 1 and $\beta = \sqrt{a(d - b\sqrt{d})}$.

If a > 0 then F is totally real, and if a < 0 then F is totally imaginary.

A defining polynomial of F is

$$df(x) = x^4 - 2adx^2 + a^2c^2d.$$

The discriminant of F is

$$\Delta_{F} = \begin{cases} 2^{8}a^{2}d^{3} & \text{if } d \equiv 0 \mod 2, \\ 2^{6}a^{2}d^{3} & \text{if } d \equiv 1 \mod 2, b \equiv 1 \mod 2, \\ 2^{4}a^{2}d^{3} & \text{if } d \equiv 1 \mod 2, b \equiv 0 \mod 2, a + b \equiv 3 \mod 4, \\ a^{2}d^{3} & \text{if } d \equiv 1 \mod 2, b \equiv 0 \mod 2, a + b \equiv 1 \mod 4. \end{cases}$$

$$(4)$$

Our results: cyclic quartic fields

Theorem 4

Let F be a cyclic quartic field defined by a, b, c, d and D | d, A | a such that d is a quadratic non-residue (mod q) for each prime divisor q of A. Then there are unique ideals of norm D and A, denoted by P_D and Q_A respectively. Let

$$\mathcal{M} = \{16A^2d, 8|a|d, 4D^2d + 4|a|d, 16D^2A^2, 4D^2A^2 + 4|a|d, 4D^2Q_A^2 + 4A^2d\}.$$

Then the ideal $P_D Q_A$ is WR if and only if $d \equiv 1 \pmod{4}$, $b \equiv 1 \pmod{2}$, $a + b \equiv 1 \pmod{4}$ and $D^2 A^2 + A^2 d + 2|a|d \leq \min \mathcal{M}$.

Our results: cyclic quartic fields

Theorem 5

With the notation given in Theorem 4, the following hold.

i) The ideal P_D is WR if and only if $d \equiv 1 \pmod{4}$, $b \equiv 0 \pmod{2}$, $a + b \equiv 1 \pmod{4}$ and one of the following conditions is satisfied.

ii) The lattice Q_A is WR if and only if d = 5, b = 2, c = 1 and $|a| \le A^2 \le 5|a|$.

Our results: cyclic quartic fields

Theorem 6

Let F be a cyclic quartic field defined by a, b, c, d and a prime p. There is a unique prime ideal of \mathcal{O}_F above p if and only one of the following conditions is satisfied.

- i) $p \mid d$.
- ii) $p \mid a \text{ and } d \text{ is a quadratic non-residue } (mod p).$

iii) $p \nmid abcd$ and d is a quadratic non-residue (mod p).

Moreover, let P denote the unique prime ideal of \mathcal{O}_F above p. Then P is WR if and only if the conditions in Theorem 5 are satisfied.

Our conjecture

Our conjecture

Conjecture: Let F be a cyclic cubic or cyclic quartic field with an odd discriminant. If a primitive integral ideal I of F is WR, then N(I) divides the discriminant of F.

If this conjecture holds then there are only finitely many WR ideals from these fields.

Our conjecture

- If this conjecture holds then there are only finitely many WR ideals from these fields.
- This conjecture agrees with the observation in Fukshansky et al. for real quadratic fields and was later proved by Srinivasan.

Our conjecture

- If this conjecture holds then there are only finitely many WR ideals from these fields.
- This conjecture agrees with the observation in Fukshansky et al. for real quadratic fields and was later proved by Srinivasan.
- ► For a cyclic quartic field F of odd discriminant, the conjecture holds for the case when the ideal I of F is the unique prime ideal above a prime number.

Our conjecture

- If this conjecture holds then there are only finitely many WR ideals from these fields.
- This conjecture agrees with the observation in Fukshansky et al. for real quadratic fields and was later proved by Srinivasan.
- ► For a cyclic quartic field F of odd discriminant, the conjecture holds for the case when the ideal I of F is the unique prime ideal above a prime number.
- The conjecture does not hold for cyclic quartic fields of even discriminant.

Conclusion

- We establish the conditions for the existence of WR ideal lattices in cyclic number fields of degrees 3 and 4.
- We show that every cyclic cubic field has orthogonal and WR ideal lattices.
- For cyclic quartic fields, we consider WR ideals of both the real and complex cases. This is the first time such results are obtained for these classes of number fields.
- We give families of cyclic cubic and cyclic quartic fields that admit WR ideals and explicitly construct minimal integral bases of these ideals.

Thank you so much for your attention!