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Premilinaries Lattices and ideal lattices

Notations

I Let F be a number field with degree n, discriminant ∆ and the ring
of integers OF . For simplicity, assume that F is totally real.

I Let σ1, . . . , σn be n embeddings of F .

I Denote by Φ = (σ1, ..., σn). Then

Φ : F ↪→ Rn takes x ∈ F to (σi (x))i .
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Premilinaries Lattices and ideal lattices

Lattices
Let B = {v1, v2, ..., vm} be a linearly independent set of vectors in Rn.
I L = {

∑m
i=1 aivi |ai ∈ Z} is called a lattice in Rn of rank m.

I B is said to be a basis of L, we write L = 〈B〉.
I In case m = n, we say that L is full rank.
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Premilinaries Lattices and ideal lattices

Ideal lattices

Ex: F = Q(
√

3) has 2
embeddings:
σ1(a + b

√
3) = a + b

√
3 and

σ2(a + b
√

3) = a− b
√

3.

The ideal I =
〈
2, 1−

√
3
〉
Z.

b1 = Φ(2) = (2, 2),
b2 = Φ(1−

√
3) =

(1−
√

3, 1 +
√

3).
Then Φ(I ) = 〈b1, b2〉Z is a lattice
in R2.

Proposition

Let I be a factional ideal of F . Then Φ(I ) is a lattice in Rn.

We call I an ideal lattice1 of F .

1It can be defined more general.
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Premilinaries Well-rounded (WR) lattices

Well-rounded lattices
Let L be a lattice in Rn.
I |L| = min06=u∈L ‖u‖2 is called the minimum norm (length) of L.
I The set of shortest vectors of L is defined as

S(L) := {u ∈ L : ‖u‖2 = |L|}.
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Premilinaries Well-rounded (WR) lattices

Well-rounded lattices
Let L be a lattice in Rn.
I L is well-rounded (WR) if S(L) generates Rn, that is, if S(L) contains

n linearly independent vectors.
I L is said strongly WR if S(L) consists of a basis of L. We call this

basis a minimal basis of L.

When n ≤ 3 WRness and strong WRness are equivalent.
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Premilinaries Well-rounded ideal lattices

Well-rounded ideal lattices

I An ideal I of a number field F is called WR if the lattice Φ(I ) is WR.

Ex: F = Q(
√

3). The ideal
I = 〈2, 1−

√
3〉Z is WR since

Φ(I ) = 〈b1, b2〉Z is WR here
b1 = (2, 2),
b2 = (1−

√
3, 1 +

√
3).
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Why WR (ideal) lattices?

Why WR (ideal) lattices?
I Many well known lattices are WR: E8, the Leech lattice, etc.

I WR ideal lattices can be used to investigate various problems:
I the shortest vector problem,
I kissing numbers,
I sphere packing problems, etc.

E8 lattice (Peter McMullen)
The Leech lattice (Gro-Tsen)

10 / 24



Why WR (ideal) lattices?

Why WR (ideal) lattices?

WR ideal lattices also offer a variety of applications to coding theory.

A wiretap fading channel.

I WR ideal lattices can be used to reduce the value of the average
probability of the correct decoding for the eavesdropper.

11 / 24
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What have been done?

What have been done?
I Fukshanksy et al.: i) the ring of integer is WR if and only if the field

is cyclotomic; ii) sufficient conditions for an ideal of quadratic fields
to be WR, the necessary condition is then proven by Srinivasan.

I Araujo and Costa: On WR lattices (but not necessarily for WR ideals)
of cyclic fields with odd prime degrees.

I Damir and Mantilla-Soler: construct a parametric family of WR
sub-lattices of a tame lattice with a Lagrangian basis.

I Solan: for any lattice L there exists a diagonal real matrix D (called a
twist) with positive entries and det(D) = 1 such that DL is WR.

I WR twists of ideal lattices of real quadratic fields are investigated by
Damir and Karpuk, and of imaginary fields by Le, Tran and Tran.

I Gnilke et al. and Damir et al.: analyses of some WR lattices used in
wiretap channels, and Damir et al.: use WR lattices to optimize coset
codes for Gaussian and fading wiretap channels.

This talk: WR ideal lattices for cyclic cubic and quartic fields.
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Our strategies

Why cyclic cucbic and quartic fields?

Let F be a cyclic cubic field with discriminant ∆F and Galois group
Gal(F ) = 〈σ〉.
I If a prime p|∆F , then pOF = P3 for a unique prime ideal P and
σi (P) = P for i ∈ {0, 1, 2}.

I If x is a shortest vector in P and the set {σi (x) : 0 ≤ i ≤ 2} is linearly
independent then P is WR.

Similar idea for:

I ideals of the form
∏

i P
mi
i where Pi is the unique ramified prime ideal

obove some prime p, and

I cyclic quartic fields with some modifications.

On the other hand, there are only few defining polynomials of cyclic
number fields of degree at least 5 are available.

13 / 24



Our strategies

Why cyclic cucbic and quartic fields?

Let F be a cyclic cubic field with discriminant ∆F and Galois group
Gal(F ) = 〈σ〉.
I If a prime p|∆F , then pOF = P3 for a unique prime ideal P and
σi (P) = P for i ∈ {0, 1, 2}.

I If x is a shortest vector in P and the set {σi (x) : 0 ≤ i ≤ 2} is linearly
independent then P is WR.

Similar idea for:

I ideals of the form
∏

i P
mi
i where Pi is the unique ramified prime ideal

obove some prime p, and

I cyclic quartic fields with some modifications.

On the other hand, there are only few defining polynomials of cyclic
number fields of degree at least 5 are available.

13 / 24



Our strategies

Why cyclic cucbic and quartic fields?

Let F be a cyclic cubic field with discriminant ∆F and Galois group
Gal(F ) = 〈σ〉.
I If a prime p|∆F , then pOF = P3 for a unique prime ideal P and
σi (P) = P for i ∈ {0, 1, 2}.

I If x is a shortest vector in P and the set {σi (x) : 0 ≤ i ≤ 2} is linearly
independent then P is WR.

Similar idea for:

I ideals of the form
∏

i P
mi
i where Pi is the unique ramified prime ideal

obove some prime p, and

I cyclic quartic fields with some modifications.

On the other hand, there are only few defining polynomials of cyclic
number fields of degree at least 5 are available.

13 / 24



Our strategies

Strategy

1. Find the defining polynomials of the field.

2. Generate a list of all integral ideals of norms bounded by a certain
number.

3. Test which ideals in the list are WR ( using the function qfminim in
Pari/GP).

4. Examine properties of obtained WR ideals such as the geometry of
integral bases, the coordinates of shortest vectors with respect to a
given integral basis, etc.

5. Formulate conjectures.

6. Prove these conjectures.

14 / 24
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Our main results

Cyclic cubic fields
Let F be a cyclic cubic field with conductor m.

m =
a2 + 3b2

4
(1)

where a, b ∈ Z such that

a ≡ 2 mod 3, b ≡ 0 mod 3 and b > 0 for 3 6 |m, and (2)

a ≡ 6 mod 9, b ≡ 3 or 6 mod 9 and b > 0 for 3|m.

The conductor m has the form

m = q1q2 · · · qr ,

where r ∈ Z>0 and q1, · · · , qr are distinct integers from the set

{9} ∪ {q : q is prime and q ≡ 1 mod 3} = {7, 9, 13, 19, 31, 37, . . . }.
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Our main results

Cyclic cubic fields

Let F be a cyclic cubic field with conductor m.

The discriminant of F is ∆F = m2.

The following polynomial can be used
to define F ,

df (x) =

{
x3 − x2 + 1−m

3 x − m(a−3)+1
27 , if 3 6 | m

x3 − m
3 x −

am
27 , if 3|m

. (3)

Let m = p1 · · · pr or m = 9 · p1 · · · pr here all pi are distinct prime numbers
and pi ≡ 1 mod 3 for i = 1, · · · , r and p0 = 3, p1 < p2 < · · · < pr .
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Our main results

Our results: cyclic cubic fields

Theorem 1
Every cyclic cubic field F has orthogonal and WR ideal lattices. In
particular, let m be the conductor of F . Then we have the following.

i) If 9 - m, then the unique ideal of norm m2 is orthogonal and WR.

ii) If 9 | m, then the unique ideal of norm
m2

27
is orthogonal and WR.

Theorem 2
Let q be a square-free divisor of the conductor m of a cyclic cubic field F .
There is a unique ideal Q of OF such that N(Q) = q. In this case, Q is

WR if and only if
(m

4
≤ q2 ≤ 4m when 3 - m

)
and(

3 | q, m
4
≤ q2 ≤ 4m when 3 | m

)
.
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Our main results

Our results: cyclic cubic fields

Theorem 3
Let m = 9p1p2 · · · pr (r ≥ 2) be the conductor m of a cyclic cubic field F
and q, q′ be two coprime divisors of p1p2 · · · pr . The unique ideal of norm

3q2q′ is WR if and only if
m

36
≤ qq′2 ≤ 4m

9
.
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Our main results

Cyclic quartic fields

A cyclic quartic field has the form F = Q(β) where a, b, c , d ∈ Z, a is
squarefree and odd, d = b2 + c2 is squarefree, b > 0, c > 0, gcd(a, d) = 1

and β =
√

a(d − b
√
d).

If a > 0 then F is totally real, and if a < 0 then F is totally imaginary.

A defining polynomial of F is

df (x) = x4 − 2adx2 + a2c2d .

The discriminant of F is

∆F =


28a2d3 if d ≡ 0 mod 2,
26a2d3 if d ≡ 1 mod 2, b ≡ 1 mod 2,
24a2d3 if d ≡ 1 mod 2, b ≡ 0 mod 2, a + b ≡ 3 mod 4,
a2d3 if d ≡ 1 mod 2, b ≡ 0 mod 2, a + b ≡ 1 mod 4.

(4)
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Our main results

Our results: cyclic quartic fields

Theorem 4
Let F be a cyclic quartic field defined by a, b, c, d and D | d , A | a such
that d is a quadratic non-residue (mod q) for each prime divisor q of A.
Then there are unique ideals of norm D and A, denoted by PD and QA

respectively. Let

M = {16A2d , 8|a|d , 4D2d+4|a|d , 16D2A2, 4D2A2+4|a|d , 4D2Q2
A+4A2d}.

Then the ideal PDQA is WR if and only if d ≡ 1 (mod 4), b ≡ 1 (mod 2),
a + b ≡ 1 (mod 4) and D2A2 + A2d + 2|a|d ≤ minM.
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Our main results

Our results: cyclic quartic fields

Theorem 5
With the notation given in Theorem 4, the following hold.

i) The ideal PD is WR if and only if d ≡ 1 (mod 4), b ≡ 0
(mod 2), a + b ≡ 1 (mod 4) and one of the following conditions is
satisfied.

I |a| = 1 and
1

5
d ≤ D2 ≤ 5d ,

I |a| = 3 and d ≤ D2 ≤ 9d ,

I |a| = 5 and
7

3
d ≤ D2 ≤ 5d .

ii) The lattice QA is WR if and only if d = 5, b = 2, c = 1 and
|a| ≤ A2 ≤ 5|a|.
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Our main results

Our results: cyclic quartic fields

Theorem 6
Let F be a cyclic quartic field defined by a, b, c, d and a prime p. There is
a unique prime ideal of OF above p if and only one of the following
conditions is satisfied.

i) p | d .

ii) p | a and d is a quadratic non-residue (mod p).

iii) p - abcd and d is a quadratic non-residue (mod p).

Moreover, let P denote the unique prime ideal of OF above p. Then P is
WR if and only if the conditions in Theorem 5 are satisfied.
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A conjecture

Our conjecture

Conjecture: Let F be a cyclic cubic or cyclic quartic field with an odd
discriminant. If a primitive integral ideal I of F is WR, then N(I ) divides
the discriminant of F .

I If this conjecture holds then there are only finitely many WR ideals
from these fields.

I This conjecture agrees with the observation in Fukshansky et al. for
real quadratic fields and was later proved by Srinivasan.

I For a cyclic quartic field F of odd discriminant, the conjecture holds
for the case when the ideal I of F is the unique prime ideal above a
prime number.

I The conjecture does not hold for cyclic quartic fields of even
discriminant.
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A conjecture

Conclusion

I We establish the conditions for the existence of WR ideal lattices in
cyclic number fields of degrees 3 and 4.

I We show that every cyclic cubic field has orthogonal and WR ideal
lattices.

I For cyclic quartic fields, we consider WR ideals of both the real and
complex cases. This is the first time such results are obtained for
these classes of number fields.

I We give families of cyclic cubic and cyclic quartic fields that admit
WR ideals and explicitly construct minimal integral bases of these
ideals.

Thank you so much for your attention!
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