Alberta Number Theory Day 2024

Well-rounded ideal lattices of cyclic cubic and quartic fields

Ha Tran

Concordia University of Edmonton
joint work with Nam Le and Dat Tran

Content

Premilinaries
Lattices and ideal lattices Well-rounded (WR) lattices
Well-rounded ideal lattices
Why WR (ideal) lattices?
What have been done?

Our strategies
Our main results
A conjecture

Notations

- Let F be a number field with degree n, discriminant Δ and the ring of integers O_{F}. For simplicity, assume that F is totally real.

Notations

- Let F be a number field with degree n, discriminant Δ and the ring of integers O_{F}. For simplicity, assume that F is totally real.
- Let $\sigma_{1}, \ldots, \sigma_{n}$ be n embeddings of F.

Notations

- Let F be a number field with degree n, discriminant Δ and the ring of integers O_{F}. For simplicity, assume that F is totally real.
- Let $\sigma_{1}, \ldots, \sigma_{n}$ be n embeddings of F.
- Denote by $\Phi=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$. Then

$$
\Phi: F \hookrightarrow \mathbb{R}^{n} \text { takes } x \in F \text { to }\left(\sigma_{i}(x)\right)_{i}
$$

Lattices

Let $\mathcal{B}=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ be a linearly independent set of vectors in \mathbb{R}^{n}.

- $L=\left\{\sum_{i=1}^{m} a_{i} v_{i} \mid a_{i} \in \mathbb{Z}\right\}$ is called a lattice in \mathbb{R}^{n} of rank m.
- \mathcal{B} is said to be a basis of L, we write $L=\langle\mathcal{B}\rangle$.
- In case $m=n$, we say that L is full rank.

The hexagonal lattice $H=\langle(1,0),(1 / 2, \sqrt{3} / 2)\rangle$.

Ideal lattices

Ex: $F=\mathbb{Q}(\sqrt{3})$ has 2
embeddings:
$\sigma_{1}(a+b \sqrt{3})=a+b \sqrt{3}$ and
$\sigma_{2}(a+b \sqrt{3})=a-b \sqrt{3}$.

Ideal lattices

Ex: $F=\mathbb{Q}(\sqrt{3})$ has 2
embeddings:
$\sigma_{1}(a+b \sqrt{3})=a+b \sqrt{3}$ and
$\sigma_{2}(a+b \sqrt{3})=a-b \sqrt{3}$.
The ideal $I=\langle 2,1-\sqrt{3}\rangle_{\mathbb{Z}}$.

Ideal lattices

Ex: $F=\mathbb{Q}(\sqrt{3})$ has 2

embeddings:

$\sigma_{1}(a+b \sqrt{3})=a+b \sqrt{3}$ and
$\sigma_{2}(a+b \sqrt{3})=a-b \sqrt{3}$.
The ideal $I=\langle 2,1-\sqrt{3}\rangle_{\mathbb{Z}}$.
$b_{1}=\Phi(2)=(2,2)$,
$b_{2}=\Phi(1-\sqrt{3})=$
$(1-\sqrt{3}, 1+\sqrt{3})$.

Ideal lattices

Ex: $F=\mathbb{Q}(\sqrt{3})$ has 2
embeddings:
$\sigma_{1}(a+b \sqrt{3})=a+b \sqrt{3}$ and
$\sigma_{2}(a+b \sqrt{3})=a-b \sqrt{3}$.
The ideal $I=\langle 2,1-\sqrt{3}\rangle_{\mathbb{Z}}$.
$b_{1}=\Phi(2)=(2,2)$,
$b_{2}=\Phi(1-\sqrt{3})=$
$(1-\sqrt{3}, 1+\sqrt{3})$.
Then $\Phi(I)=\left\langle b_{1}, b_{2}\right\rangle_{\mathbb{Z}}$ is a lattice in R^{2}.

Ideal lattices

Ex: $F=\mathbb{Q}(\sqrt{3})$ has 2 embeddings:
$\sigma_{1}(a+b \sqrt{3})=a+b \sqrt{3}$ and
$\sigma_{2}(a+b \sqrt{3})=a-b \sqrt{3}$.
The ideal $I=\langle 2,1-\sqrt{3}\rangle_{\mathbb{Z}}$.
$b_{1}=\Phi(2)=(2,2)$,
$b_{2}=\Phi(1-\sqrt{3})=$
$(1-\sqrt{3}, 1+\sqrt{3})$.
Then $\Phi(I)=\left\langle b_{1}, b_{2}\right\rangle_{\mathbb{Z}}$ is a lattice in R^{2}.

Ideal lattices

Ex: $F=\mathbb{Q}(\sqrt{3})$ has 2 embeddings:
$\sigma_{1}(a+b \sqrt{3})=a+b \sqrt{3}$ and
$\sigma_{2}(a+b \sqrt{3})=a-b \sqrt{3}$.
The ideal $I=\langle 2,1-\sqrt{3}\rangle_{\mathbb{Z}}$.
$b_{1}=\Phi(2)=(2,2)$,
$b_{2}=\Phi(1-\sqrt{3})=$
$(1-\sqrt{3}, 1+\sqrt{3})$.
Then $\Phi(I)=\left\langle b_{1}, b_{2}\right\rangle_{\mathbb{Z}}$ is a lattice in R^{2}.

Proposition

Let I be a factional ideal of F. Then $\Phi(I)$ is a lattice in \mathbb{R}^{n}.
We call I an ideal lattice ${ }^{1}$ of F.

[^0]
Well-rounded lattices

Let L be a lattice in \mathbb{R}^{n}.

- $|L|=\min _{0 \neq u \in L}\|u\|^{2}$ is called the minimum norm (length) of L.
- The set of shortest vectors of L is defined as

$$
S(L):=\left\{u \in L:\|u\|^{2}=|L|\right\} .
$$

$$
\begin{aligned}
& L=\langle(1,0),(0,2)\rangle \\
& |L|=? \quad S(L)=?
\end{aligned}
$$

The hexagonal lattice

$$
\begin{aligned}
& H=\langle(1,0),(1 / 2, \sqrt{3} / 2)\rangle . \\
& |H|=? \quad S(H)^{=}=?
\end{aligned}
$$

Well-rounded lattices

- $|L|=\min _{0 \neq u \in L}\|u\|^{2}$

$$
S(L):=\left\{u \in L:\|u\|^{2}=|L|\right\} .
$$

$$
\begin{aligned}
& L=\langle(1,0),(0,2)\rangle . \\
& |L|=1, S(L)=\{ \pm(1,0)\} .
\end{aligned}
$$

The hexagonal lattice $H=\langle(1,0),(1 / 2, \sqrt{3} / 2)\rangle$.

Well-rounded lattices

- $|L|=\min _{0 \neq u \in L}\|u\|^{2}$

$$
S(L):=\left\{u \in L:\|u\|^{2}=|L|\right\} .
$$

$$
\begin{aligned}
& L=\langle(1,0),(0,2)\rangle . \\
& |L|=1, S(L)=\{ \pm(1,0)\} .
\end{aligned}
$$

The hexagonal lattice

$$
\begin{aligned}
& H=\langle(1,0),(1 / 2, \sqrt{3} / 2)\rangle . \\
& |L|=1, \\
& S(\mathrm{~L})=\{ \pm(1,0),(\pm 1 / 2, \pm \sqrt{3} / 2)\} .
\end{aligned}
$$

Well-rounded lattices

Let L be a lattice in \mathbb{R}^{n}.

- L is well-rounded (WR) if $S(L)$ generates \mathbb{R}^{n}, that is, if $S(L)$ contains n linearly independent vectors.
- L is said strongly WR if $S(L)$ consists of a basis of L. We call this basis a minimal basis of L.

Well-rounded lattices

Let L be a lattice in \mathbb{R}^{n}.

- L is well-rounded (WR) if $S(L)$ generates \mathbb{R}^{n}, that is, if $S(L)$ contains n linearly independent vectors.
- L is said strongly WR if $S(L)$ consists of a basis of L. We call this basis a minimal basis of L.
When $n \leq 3$ WRness and strong WRness are equivalent.

The hexagonal lattice is (strongly) WR.

Well-rounded ideal lattices

- An ideal I of a number field F is called WR if the lattice $\Phi(I)$ is WR.

Ex: $F=\mathbb{Q}(\sqrt{3})$. The ideal $I=\langle 2,1-\sqrt{3}\rangle_{\mathbb{Z}}$ is WR since $\Phi(I)=\left\langle b_{1}, b_{2}\right\rangle_{\mathbb{Z}}$ is WR here
$b_{1}=(2,2)$,
$b_{2}=(1-\sqrt{3}, 1+\sqrt{3})$.

Why WR (ideal) lattices?

- Many well known lattices are WR: E_{8}, the Leech lattice, etc.
- WR ideal lattices can be used to investigate various problems:
- the shortest vector problem,
- kissing numbers,
- sphere packing problems, etc.

E_{8} lattice (Peter McMullen)

The Leech lattice (Gro-Tsen)

Why WR (ideal) lattices?

WR ideal lattices also offer a variety of applications to coding theory.

A wiretap fading channel.

Why WR (ideal) lattices?

WR ideal lattices also offer a variety of applications to coding theory.

A wiretap fading channel.

- WR ideal lattices can be used to reduce the value of the average probability of the correct decoding for the eavesdropper.

What have been done?

- Fukshanksy et al.: i) the ring of integer is WR if and only if the field is cyclotomic; ii) sufficient conditions for an ideal of quadratic fields to be WR, the necessary condition is then proven by Srinivasan.

What have been done?

- Fukshanksy et al.: i) the ring of integer is WR if and only if the field is cyclotomic; ii) sufficient conditions for an ideal of quadratic fields to be WR, the necessary condition is then proven by Srinivasan.
- Araujo and Costa: On WR lattices (but not necessarily for WR ideals) of cyclic fields with odd prime degrees.

What have been done?

- Fukshanksy et al.: i) the ring of integer is WR if and only if the field is cyclotomic; ii) sufficient conditions for an ideal of quadratic fields to be WR, the necessary condition is then proven by Srinivasan.
- Araujo and Costa: On WR lattices (but not necessarily for WR ideals) of cyclic fields with odd prime degrees.
- Damir and Mantilla-Soler: construct a parametric family of WR sub-lattices of a tame lattice with a Lagrangian basis.

What have been done?

- Fukshanksy et al.: i) the ring of integer is WR if and only if the field is cyclotomic; ii) sufficient conditions for an ideal of quadratic fields to be WR, the necessary condition is then proven by Srinivasan.
- Araujo and Costa: On WR lattices (but not necessarily for WR ideals) of cyclic fields with odd prime degrees.
- Damir and Mantilla-Soler: construct a parametric family of WR sub-lattices of a tame lattice with a Lagrangian basis.
- Solan: for any lattice L there exists a diagonal real matrix D (called a twist) with positive entries and $\operatorname{det}(D)=1$ such that $D L$ is WR.

What have been done?

- Fukshanksy et al.: i) the ring of integer is WR if and only if the field is cyclotomic; ii) sufficient conditions for an ideal of quadratic fields to be WR, the necessary condition is then proven by Srinivasan.
- Araujo and Costa: On WR lattices (but not necessarily for WR ideals) of cyclic fields with odd prime degrees.
- Damir and Mantilla-Soler: construct a parametric family of WR sub-lattices of a tame lattice with a Lagrangian basis.
- Solan: for any lattice L there exists a diagonal real matrix D (called a twist) with positive entries and $\operatorname{det}(D)=1$ such that $D L$ is WR.
- WR twists of ideal lattices of real quadratic fields are investigated by Damir and Karpuk, and of imaginary fields by Le, Tran and Tran.

What have been done?

- Fukshanksy et al.: i) the ring of integer is WR if and only if the field is cyclotomic; ii) sufficient conditions for an ideal of quadratic fields to be WR, the necessary condition is then proven by Srinivasan.
- Araujo and Costa: On WR lattices (but not necessarily for WR ideals) of cyclic fields with odd prime degrees.
- Damir and Mantilla-Soler: construct a parametric family of WR sub-lattices of a tame lattice with a Lagrangian basis.
- Solan: for any lattice L there exists a diagonal real matrix D (called a twist) with positive entries and $\operatorname{det}(D)=1$ such that $D L$ is WR.
- WR twists of ideal lattices of real quadratic fields are investigated by Damir and Karpuk, and of imaginary fields by Le, Tran and Tran.
- Gnilke et al. and Damir et al.: analyses of some WR lattices used in wiretap channels, and Damir et al.: use WR lattices to optimize coset codes for Gaussian and fading wiretap channels.

What have been done?

- Fukshanksy et al.: i) the ring of integer is WR if and only if the field is cyclotomic; ii) sufficient conditions for an ideal of quadratic fields to be WR, the necessary condition is then proven by Srinivasan.
- Araujo and Costa: On WR lattices (but not necessarily for WR ideals) of cyclic fields with odd prime degrees.
- Damir and Mantilla-Soler: construct a parametric family of WR sub-lattices of a tame lattice with a Lagrangian basis.
- Solan: for any lattice L there exists a diagonal real matrix D (called a twist) with positive entries and $\operatorname{det}(D)=1$ such that $D L$ is WR.
- WR twists of ideal lattices of real quadratic fields are investigated by Damir and Karpuk, and of imaginary fields by Le, Tran and Tran.
- Gnilke et al. and Damir et al.: analyses of some WR lattices used in wiretap channels, and Damir et al.: use WR lattices to optimize coset codes for Gaussian and fading wiretap channels.

This talk: WR ideal lattices for cyclic cubic and quartic fields.

Why cyclic cucbic and quartic fields?

Let F be a cyclic cubic field with discriminant Δ_{F} and Galois group $G a l(F)=\langle\sigma\rangle$.

- If a prime $p \mid \Delta_{F}$, then $p O_{F}=P^{3}$ for a unique prime ideal P and $\sigma^{i}(P)=P$ for $i \in\{0,1,2\}$.
- If x is a shortest vector in P and the set $\left\{\sigma^{i}(x): 0 \leq i \leq 2\right\}$ is linearly independent then P is WR.

Why cyclic cucbic and quartic fields?

Let F be a cyclic cubic field with discriminant Δ_{F} and Galois group $G a l(F)=\langle\sigma\rangle$.

- If a prime $p \mid \Delta_{F}$, then $p O_{F}=P^{3}$ for a unique prime ideal P and $\sigma^{i}(P)=P$ for $i \in\{0,1,2\}$.
- If x is a shortest vector in P and the set $\left\{\sigma^{i}(x): 0 \leq i \leq 2\right\}$ is linearly independent then P is WR.

Similar idea for:

- ideals of the form $\prod_{i} P_{i}^{m_{i}}$ where P_{i} is the unique ramified prime ideal obove some prime p, and
- cyclic quartic fields with some modifications.

Why cyclic cucbic and quartic fields?

Let F be a cyclic cubic field with discriminant Δ_{F} and Galois group $G a l(F)=\langle\sigma\rangle$.

- If a prime $p \mid \Delta_{F}$, then $p O_{F}=P^{3}$ for a unique prime ideal P and $\sigma^{i}(P)=P$ for $i \in\{0,1,2\}$.
- If x is a shortest vector in P and the set $\left\{\sigma^{i}(x): 0 \leq i \leq 2\right\}$ is linearly independent then P is WR.

Similar idea for:

- ideals of the form $\prod_{i} P_{i}^{m_{i}}$ where P_{i} is the unique ramified prime ideal obove some prime p, and
- cyclic quartic fields with some modifications.

On the other hand, there are only few defining polynomials of cyclic number fields of degree at least 5 are available.

Strategy

1. Find the defining polynomials of the field.

Strategy

1. Find the defining polynomials of the field.
2. Generate a list of all integral ideals of norms bounded by a certain number.

Strategy

1. Find the defining polynomials of the field.
2. Generate a list of all integral ideals of norms bounded by a certain number.
3. Test which ideals in the list are WR (using the function qfminim in Pari/GP).

Strategy

1. Find the defining polynomials of the field.
2. Generate a list of all integral ideals of norms bounded by a certain number.
3. Test which ideals in the list are WR (using the function qfminim in Pari/GP).
4. Examine properties of obtained WR ideals such as the geometry of integral bases, the coordinates of shortest vectors with respect to a given integral basis, etc.

Strategy

1. Find the defining polynomials of the field.
2. Generate a list of all integral ideals of norms bounded by a certain number.
3. Test which ideals in the list are WR (using the function qfminim in Pari/GP).
4. Examine properties of obtained WR ideals such as the geometry of integral bases, the coordinates of shortest vectors with respect to a given integral basis, etc.
5. Formulate conjectures.

Strategy

1. Find the defining polynomials of the field.
2. Generate a list of all integral ideals of norms bounded by a certain number.
3. Test which ideals in the list are WR (using the function qfminim in Pari/GP).
4. Examine properties of obtained WR ideals such as the geometry of integral bases, the coordinates of shortest vectors with respect to a given integral basis, etc.
5. Formulate conjectures.
6. Prove these conjectures.

Cyclic cubic fields

Let F be a cyclic cubic field with conductor m.

$$
\begin{equation*}
m=\frac{a^{2}+3 b^{2}}{4} \tag{1}
\end{equation*}
$$

where $a, b \in \mathbb{Z}$ such that

$$
\begin{align*}
& a \equiv 2 \bmod 3, b \equiv 0 \quad \bmod 3 \text { and } b>0 \text { for } 3 \nmid m, \text { and } \tag{2}\\
& a \equiv 6 \bmod 9, b \equiv 3 \text { or } 6 \bmod 9 \text { and } b>0 \text { for } 3 \mid m .
\end{align*}
$$

Cyclic cubic fields

Let F be a cyclic cubic field with conductor m.

$$
\begin{equation*}
m=\frac{a^{2}+3 b^{2}}{4} \tag{1}
\end{equation*}
$$

where $a, b \in \mathbb{Z}$ such that

$$
\begin{aligned}
& a \equiv 2 \bmod 3, b \equiv 0 \quad \bmod 3 \text { and } b>0 \text { for } 3 \nmid m, \text { and } \\
& a \equiv 6 \bmod 9, b \equiv 3 \text { or } 6 \bmod 9 \text { and } b>0 \text { for } 3 \mid m .
\end{aligned}
$$

The conductor m has the form

$$
m=q_{1} q_{2} \cdots q_{r}
$$

where $r \in \mathbb{Z}_{>0}$ and q_{1}, \cdots, q_{r} are distinct integers from the set
$\{9\} \cup\{q: q$ is prime and $q \equiv 1 \bmod 3\}=\{7,9,13,19,31,37, \ldots\}$.

Cyclic cubic fields

Let F be a cyclic cubic field with conductor m.
The discriminant of F is $\Delta_{F}=m^{2}$.

Cyclic cubic fields

Let F be a cyclic cubic field with conductor m.
The discriminant of F is $\Delta_{F}=m^{2}$. The following polynomial can be used to define F,

$$
d f(x)=\left\{\begin{array}{cc}
x^{3}-x^{2}+\frac{1-m}{3} x-\frac{m(a-3)+1}{27}, & \text { if } 3 \nmid m \tag{3}\\
x^{3}-\frac{m}{3} x-\frac{a m}{27}, & \text { if } 3 \mid m
\end{array} .\right.
$$

Cyclic cubic fields

Let F be a cyclic cubic field with conductor m.
The discriminant of F is $\Delta_{F}=m^{2}$. The following polynomial can be used to define F,

$$
d f(x)=\left\{\begin{array}{cc}
x^{3}-x^{2}+\frac{1-m}{3} x-\frac{m(a-3)+1}{27}, & \text { if } 3 \nmid m \tag{3}\\
x^{3}-\frac{m}{3} x-\frac{a m}{27}, & \text { if } 3 \mid m
\end{array} .\right.
$$

Let $m=p_{1} \cdots p_{r}$ or $m=9 \cdot p_{1} \cdots p_{r}$ here all p_{i} are distinct prime numbers and $p_{i} \equiv 1 \bmod 3$ for $i=1, \cdots, r$ and $p_{0}=3, p_{1}<p_{2}<\cdots<p_{r}$.

Our results: cyclic cubic fields

Theorem 1
Every cyclic cubic field F has orthogonal and WR ideal lattices. In particular, let m be the conductor of F. Then we have the following.
i) If $9 \nmid m$, then the unique ideal of norm m^{2} is orthogonal and $W R$.
ii) If $9 \mid m$, then the unique ideal of norm $\frac{m^{2}}{27}$ is orthogonal and $W R$.

Our results: cyclic cubic fields

Theorem 1
Every cyclic cubic field F has orthogonal and WR ideal lattices. In particular, let m be the conductor of F. Then we have the following.
i) If $9 \nmid m$, then the unique ideal of norm m^{2} is orthogonal and $W R$.
ii) If $9 \mid m$, then the unique ideal of norm $\frac{m^{2}}{27}$ is orthogonal and $W R$.

Theorem 2

Let q be a square-free divisor of the conductor m of a cyclic cubic field F. There is a unique ideal Q of O_{F} such that $N(Q)=q$. In this case, Q is $W R$ if and only if $\left(\frac{m}{4} \leq q^{2} \leq 4 m\right.$ when $\left.3 \nmid m\right)$ and
$\left(3 \mid q, \frac{m}{4} \leq q^{2} \leq 4 m\right.$ when $\left.3 \mid m\right)$.

Our results: cyclic cubic fields

Theorem 3

Let $m=9 p_{1} p_{2} \cdots p_{r}(r \geq 2)$ be the conductor m of a cyclic cubic field F and q, q^{\prime} be two coprime divisors of $p_{1} p_{2} \cdots p_{r}$. The unique ideal of norm $3 q^{2} q^{\prime}$ is $W R$ if and only if $\frac{m}{36} \leq q q^{\prime 2} \leq \frac{4 m}{9}$.

Cyclic quartic fields

A cyclic quartic field has the form $F=\mathbb{Q}(\beta)$ where $a, b, c, d \in \mathbb{Z}$, a is squarefree and odd, $d=b^{2}+c^{2}$ is squarefree, $b>0, c>0, \operatorname{gcd}(a, d)=1$ and $\beta=\sqrt{a(d-b \sqrt{d})}$.

Cyclic quartic fields

A cyclic quartic field has the form $F=\mathbb{Q}(\beta)$ where $a, b, c, d \in \mathbb{Z}$, a is squarefree and odd, $d=b^{2}+c^{2}$ is squarefree, $b>0, c>0, \operatorname{gcd}(a, d)=1$ and $\beta=\sqrt{a(d-b \sqrt{d})}$.
If $a>0$ then F is totally real, and if $a<0$ then F is totally imaginary.

Cyclic quartic fields

A cyclic quartic field has the form $F=\mathbb{Q}(\beta)$ where $a, b, c, d \in \mathbb{Z}$, a is squarefree and odd, $d=b^{2}+c^{2}$ is squarefree, $b>0, c>0, \operatorname{gcd}(a, d)=1$ and $\beta=\sqrt{a(d-b \sqrt{d})}$.
If $a>0$ then F is totally real, and if $a<0$ then F is totally imaginary.
A defining polynomial of F is

$$
d f(x)=x^{4}-2 a d x^{2}+a^{2} c^{2} d
$$

Cyclic quartic fields

A cyclic quartic field has the form $F=\mathbb{Q}(\beta)$ where $a, b, c, d \in \mathbb{Z}$, a is squarefree and odd, $d=b^{2}+c^{2}$ is squarefree, $b>0, c>0, \operatorname{gcd}(a, d)=1$ and $\beta=\sqrt{a(d-b \sqrt{d})}$.
If $a>0$ then F is totally real, and if $a<0$ then F is totally imaginary.
A defining polynomial of F is

$$
d f(x)=x^{4}-2 a d x^{2}+a^{2} c^{2} d
$$

The discriminant of F is

Our results: cyclic quartic fields

Theorem 4
Let F be a cyclic quartic field defined by a, b, c, d and $D|d, A|$ a such that d is a quadratic non-residue $(\bmod q)$ for each prime divisor q of A. Then there are unique ideals of norm D and A, denoted by P_{D} and Q_{A} respectively. Let
$\mathcal{M}=\left\{16 A^{2} d, 8|a| d, 4 D^{2} d+4|a| d, 16 D^{2} A^{2}, 4 D^{2} A^{2}+4|a| d, 4 D^{2} Q_{A}^{2}+4 A^{2} d\right\}$.
Then the ideal $P_{D} Q_{A}$ is $W R$ if and only if $d \equiv 1(\bmod 4), b \equiv 1(\bmod 2)$, $a+b \equiv 1(\bmod 4)$ and $D^{2} A^{2}+A^{2} d+2|a| d \leq \min \mathcal{M}$.

Our results: cyclic quartic fields

Theorem 5

With the notation given in Theorem 4, the following hold.
i) The ideal P_{D} is $W R$ if and only if $d \equiv 1(\bmod 4), b \equiv 0$ $(\bmod 2), a+b \equiv 1(\bmod 4)$ and one of the following conditions is satisfied.

- $|a|=1$ and $\frac{1}{5} d \leq D^{2} \leq 5 d$,
- $|a|=3$ and $d \leq D^{2} \leq 9 d$,
- $|a|=5$ and $\frac{7}{3} d \leq D^{2} \leq 5 d$.
ii) The lattice Q_{A} is $W R$ if and only if $d=5, b=2, c=1$ and $|a| \leq A^{2} \leq 5|a|$.

Our results: cyclic quartic fields

Theorem 6
Let F be a cyclic quartic field defined by a, b, c, d and a prime p. There is a unique prime ideal of \mathcal{O}_{F} above p if and only one of the following conditions is satisfied.
i) $p \mid d$.
ii) $p \mid a$ and d is a quadratic non-residue $(\bmod p)$.
iii) $p \nmid a b c d$ and d is a quadratic non-residue $(\bmod p)$.

Moreover, let P denote the unique prime ideal of \mathcal{O}_{F} above p. Then P is WR if and only if the conditions in Theorem 5 are satisfied.

Our conjecture

Conjecture: Let F be a cyclic cubic or cyclic quartic field with an odd discriminant. If a primitive integral ideal $/$ of F is WR , then $N(I)$ divides the discriminant of F.

Our conjecture

Conjecture: Let F be a cyclic cubic or cyclic quartic field with an odd discriminant. If a primitive integral ideal I of F is WR , then $N(I)$ divides the discriminant of F.

- If this conjecture holds then there are only finitely many WR ideals from these fields.

Our conjecture

Conjecture: Let F be a cyclic cubic or cyclic quartic field with an odd discriminant. If a primitive integral ideal $/$ of F is WR, then $N(I)$ divides the discriminant of F.

- If this conjecture holds then there are only finitely many WR ideals from these fields.
- This conjecture agrees with the observation in Fukshansky et al. for real quadratic fields and was later proved by Srinivasan.

Our conjecture

Conjecture: Let F be a cyclic cubic or cyclic quartic field with an odd discriminant. If a primitive integral ideal I of F is WR , then $N(I)$ divides the discriminant of F.

- If this conjecture holds then there are only finitely many WR ideals from these fields.
- This conjecture agrees with the observation in Fukshansky et al. for real quadratic fields and was later proved by Srinivasan.
- For a cyclic quartic field F of odd discriminant, the conjecture holds for the case when the ideal I of F is the unique prime ideal above a prime number.

Our conjecture

Conjecture: Let F be a cyclic cubic or cyclic quartic field with an odd discriminant. If a primitive integral ideal I of F is WR , then $N(I)$ divides the discriminant of F.

- If this conjecture holds then there are only finitely many WR ideals from these fields.
- This conjecture agrees with the observation in Fukshansky et al. for real quadratic fields and was later proved by Srinivasan.
- For a cyclic quartic field F of odd discriminant, the conjecture holds for the case when the ideal I of F is the unique prime ideal above a prime number.
- The conjecture does not hold for cyclic quartic fields of even discriminant.

Conclusion

- We establish the conditions for the existence of WR ideal lattices in cyclic number fields of degrees 3 and 4 .
- We show that every cyclic cubic field has orthogonal and WR ideal lattices.
- For cyclic quartic fields, we consider WR ideals of both the real and complex cases. This is the first time such results are obtained for these classes of number fields.
- We give families of cyclic cubic and cyclic quartic fields that admit WR ideals and explicitly construct minimal integral bases of these ideals.

Thank you so much for your attention!

[^0]: ${ }^{1}$ It can be defined more general.

