Geometry of log－unit lattices

Fatemeh Jalalvand
Department of Mathematics and Statistics
University of Calgary

March 23， 2024

Supervisor：Prof．Renate Scheidler
Co－Supervisor：Prof．Ha Tran

Motivation

- One motivation behind studying the geometry of log-unit lattices stems from lattice-based cryptography. See, for example, (Cramer, Ducas, Peikert, and Regev-2016) whose analysis of log-unit lattices of cyclotomic fields showed that the SOLILOQUY (Campbell, Groves, and Shepherd-2014) and Smart-Vercauteren cryptosystems (Smart and Vercauterenm-2010) are broken.
- Knowing that a lattice is orthogonal, provides useful information about the shortest vectors (SVP).
- Knowing the geometry of lattices helps bound the regulator.
- WR lattices have a variety of applications in coding theory.

Lattices

Definition 1

Let \mathbb{R}^{m} be the m-dimensional Euclidean space. A lattice in \mathbb{R}^{m} is the set

$$
\Lambda\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right)=\left\{\sum_{i=1}^{k} x_{i} \mathbf{b}_{i}: x_{i} \in \mathbb{Z}\right\}
$$

of all integral combinations of k linearly independent vectors $\mathbf{b}_{\mathbf{1}}, \ldots, \mathbf{b}_{\mathbf{k}}$ in $\mathbb{R}^{m}(m \geq k)$. The integers k and m are called the rank and dimension of the lattice, respectively. The set of vectors $\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}$ is called a lattice basis.

Lattices

(b) Lattice of rank and dimension 2
(a) Hexagonal lattice

Orthogonal lattice

Definition 2

A basis is orthogonal if distinct basis vectors are pairwise orthogonal with respect to inner products in \mathbb{R}^{m}.

Definition 3

If lattice Λ has an orthogonal basis, we say that Λ is orthogonal.

Orthogonal lattice

Figure: Orthogonal lattice

Gram matrix

Definition 4

Given a lattice Λ in \mathbb{R}^{m} with basis $\left\{b_{1}, \ldots, b_{k}\right\}$, we form the Gram matrix of Λ, denoted $\operatorname{Gr}(\Lambda)$, by taking inner products of the basis vectors:

$$
\operatorname{Gr}(\Lambda)=\left(\left\langle b_{i}, b_{j}\right\rangle\right)_{1 \leq i, j \leq k} .
$$

Here are gram matrices corresponding to a hexagonal and orthogonal lattice:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & \frac{1}{2} \\
\frac{1}{2} & 1
\end{array}\right],} \\
& {\left[\begin{array}{ll}
4 & 0 \\
0 & 6
\end{array}\right] .}
\end{aligned}
$$

Well rounded lattices

Definition 5

A shortest vector in a lattice is a vector of minimal Euclidean length. We define a lattice of rank k to be well-rounded if it contains $k \mathbb{Z}$-linearly independent shortest vectors, and strongly WR if it contains a minimal basis, i.e. a basis consisting of shortest vectors.

- Every strongly WR lattice is WR, but the converse does not necessarily hold for $4 \leq k$.
- Hexagonal lattice is a strongly WR lattice.

Logarithmic embedding

Let K be a number field of degree $n=r+s$ with U_{K} denoting its group of units.

Theorem 1

Consider the map Log : $U_{K} \rightarrow \mathbb{R}^{r+s}$ given by:

$$
\log (\alpha)=\left(\log \left|\sigma_{1}(\alpha)\right|, \ldots, \log \left|\sigma_{r}(\alpha)\right|, 2 \log \left|\tau_{1}(\alpha)\right|, \ldots, 2 \log \left|\tau_{s}(\alpha)\right|\right)
$$

where σ_{i} and τ_{i} correspond to real and pairs of complex embeddings of K respectively. Let $\mathcal{H} \subset \mathbb{R}^{r+s}$ be the hyperplane

$$
\mathcal{H}:=\left\{\left(u_{1}, \ldots, u_{r+s}\right) \in \mathbb{R}^{r+s}: \sum_{i=1}^{r+s} u_{i}=0\right\}
$$

Then $\log \left(U_{K}\right)$ is a lattice contained in \mathcal{H} and called log-unit lattice of K and the kernel of this map are the roots of unity.

Fundamental units

- According to Dirichlet's unit theorem, U_{K} is a finitely generated abelian group of rank $r+s-1$ whose torsion part is the roots of unity in K.
- A system of generators of the free part of U_{K} is called a system of fundamental units.
- Let K be a Galois extension of \mathbb{Q}. A unit u in U_{K} is called a Minkowski unit if u and its conjugates generate the group of units.

Cyclic cubics

- Hasse proved every cyclic cubic field has a Minkowski unit.

Example 6

Let $f=x^{3}-x^{2}-2 x+1$ be the defining polynomial of the Galois number field K with root a. The roots are: $a, \frac{1}{1-a}, 1-\frac{1}{a}$ and a pair of fundamental units are: $a, \frac{1}{1-a}$. Here the Galois generator sends a to $\frac{1}{1-a}$ and so a and $\frac{1}{1-a}$ are Minkowski units.

Numerical experiment - Cyclic quartics

If K is a cyclic quartic extension of \mathbb{Q}, it is shown by (Hardy, Hudson, Richman, Williams, and Holtz-1987) that there are integers A, B, C, D such that

$$
K=\mathbb{Q}(\sqrt{A(D+B \sqrt{D})})
$$

where

$$
\left\{\begin{array}{l}
A \text { is squarefree and odd, } \\
D=B^{2}+C^{2} \text { is squarefree, } B>0, C>0 \\
A \text { and } D \text { are relatively prime }
\end{array}\right.
$$

An experiment by Tran shows that running all possible integers [A, B, C, D] up to 1000 give us 421496 fields among which 369267 have orthogonal log-unit lattices (thus about 87.6% of these fields have orthogonal log-unit lattices).

Numerical experiment - Real pure quartics

In my experiment involving a real pure quartic field extension, where the defining irreducible polynomial is given by $x^{4}-a$ with a fourth power free integer a, it was observed that among 100,000 such pure quartic fields, the Gram matrix of 80 percent of them are orthogonal.

Quartic field - Biquadratic case $K=\mathbb{Q}(\sqrt{m}, \sqrt{n})$

There are three subfields of $K, k_{1}=\mathbb{Q}(\sqrt{m}), k_{2}=\mathbb{Q}(\sqrt{n})$, and $k_{3}=\mathbb{Q}\left(\sqrt{\frac{m . n}{g c d(m, n)}}\right)$ and $\varepsilon_{1}, \varepsilon_{2}$, and ε_{3} are three corresponding fundamental units of the above subfields.

Quartic field - Biquadratic case $K=\mathbb{Q}(\sqrt{m}, \sqrt{n})$

There are three subfields of $K, k_{1}=\mathbb{Q}(\sqrt{m}), k_{2}=\mathbb{Q}(\sqrt{n})$, and $k_{3}=\mathbb{Q}\left(\sqrt{\frac{m . n}{g c d(m, n)}}\right)$ and $\varepsilon_{1}, \varepsilon_{2}$, and ε_{3} are three corresponding fundamental units of the above subfields.
(Kubota-1956) proved there are the following possibilities of fundamental units for K :
Type I: Up to permutation of subscripts, one of (a) $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$;
$\sqrt{\varepsilon_{1}}, \varepsilon_{2}, \varepsilon_{3}$; or (c) $\sqrt{\varepsilon_{1}}, \sqrt{\varepsilon_{2}}, \varepsilon_{3}$.
Type II: Up to permutation of subscripts, one of (a) $\sqrt{\varepsilon_{1} \varepsilon_{2}}, \varepsilon_{2}, \varepsilon_{3}$ or (b) $\sqrt{\varepsilon_{1} \varepsilon_{2}}, \varepsilon_{2}, \sqrt{\varepsilon_{3}}$.

Type III: $\sqrt{\varepsilon_{1} \varepsilon_{2}}, \sqrt{\varepsilon_{2} \varepsilon_{3}}, \sqrt{\varepsilon_{1} \varepsilon_{3}}$.
Type IV: $\sqrt{\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}}, \varepsilon_{2}, \varepsilon_{3}$.

Orthogonal and WR biquadratic lattices

Theorem 2 (Tellez, Powell, and Sharif - 2021)

Suppose K is a real biquadratic field. The log-unit lattice of K is orthogonal if and only if K is of type I.

- Conjecture(Cruz-Jalalvand): Suppose K is a real biquadratic number field. WR log unit lattices only occur in type IV.

Log-unit lattices as modules over group rings

- Thinking of lattices modulo rotation and scaling.
- Considering the Galois module structure of the lattices and their Gram matrix modulo above similarities.
- The shortest vectors are invariant under this similarity.
- Let K be a real bicyclic extension of \mathbb{Q} with
$\operatorname{Gal}(K / \mathbb{Q})=\{1, \sigma, \tau, \sigma \tau\}$. Let Λ be the log unit lattice of K. Note that Λ is a module over $\mathbb{Z}[\sigma, \tau] /<\tau^{2}-1, \sigma^{2}-1,1+\sigma \tau+\sigma+\tau>$.

Real biquadratics

- Note that in this case, $v=\sqrt{\epsilon_{1} \epsilon_{2} \epsilon_{3}}$ is a Minkowski unit. Here is the Gram matrix of a basis corresponding to the Minkowski vector:

$$
\left[\begin{array}{ccc}
\langle v, v\rangle & \langle v, \sigma(v)\rangle & \langle v, \tau(v)\rangle \\
\langle\sigma(v), v\rangle & \langle\sigma(v), \sigma(v)\rangle & \langle\sigma(v), \tau(v)\rangle \\
\langle\tau(v), v\rangle & \langle\tau(v), \sigma(v)\rangle & \langle\tau(v), \tau(v)\rangle
\end{array}\right] .
$$

which is similar to:

$$
\left[\begin{array}{ccc}
1 & x & y \\
x & 1 & -1-x-y \\
y & -1-x-y & 1
\end{array}\right],
$$

where $x:=\langle\sigma(v), \sigma(v)\rangle$ and $y=:\langle\sigma(v), \tau(v)\rangle$

Real biquadratics

Theorem 3

Let Λ be a lattice of rank 3. Then Λ is well-rounded if and only if there exists a basis $B=\{x, y, z\}$ of Λ whose associated Gram matrix is of the form

$$
G_{B}=\left[\begin{array}{lll}
a & b & c \\
b & a & d \\
c & d & a
\end{array}\right]
$$

where $a=\|x\|^{2}=\|y\|^{2}=\|z\|^{2}$ and the quantities a, b, c, d satisfy the inequalities

$$
\begin{aligned}
|b|,|c|,|d| & \leq a / 2 \\
-b+c+d & \leq a \\
b-c+d & \leq a \\
b+c-d & \leq a \\
-b-c-d & \leq a
\end{aligned}
$$

Real Biquadratics

So by the previous theorem $(a=1, b=x, c=y, d=-1-x-y)$:

Thanks for your attention!

Successive Minima

Definition 7

The i-th successive minimum λ_{i} of a lattice is the radius of the smallest sphere centered in the origin that contains i \mathbb{Z}-linearly independent lattice vectors.

Numercal example for WR lattice

$(Q)(\sqrt{41}, \sqrt{317})$
[66.925330, -32.328653, -26.627351;
-32.328653, 66.925330, -7.9693252;
$-26.627351,-7.969325,66.925330]$,
$[8,66.925330,[0,1,-1,0 ; 0,1,0,1 ; 1,1,0,0]]]$

Lattice without a minimal basis

An 11-dimensional gram matrix Λ

$$
\left[\begin{array}{ccccccccccc}
60 & 5 & 5 & 5 & 5 & 5 & -12 & -12 & -12 & -12 & -7 \\
5 & 60 & 5 & 5 & 5 & 5 & -12 & -12 & -12 & -12 & -7 \\
5 & 5 & 60 & 5 & 5 & 5 & -12 & -12 & -12 & -12 & -7 \\
5 & 5 & 5 & 60 & 5 & 5 & -12 & -12 & -12 & -12 & -7 \\
5 & 5 & 5 & 5 & 60 & 5 & -12 & -12 & -12 & -12 & -7 \\
5 & 5 & 5 & 5 & 5 & 60 & -12 & -12 & -12 & -12 & -7 \\
-12 & -12 & -12 & -12 & -12 & -12 & 60 & -1 & -1 & -1 & -13 \\
-12 & -12 & -12 & -12 & -12 & -12 & -1 & 60 & -1 & -1 & -13 \\
-12 & -12 & -12 & -12 & -12 & -12 & -1 & -1 & 60 & -1 & -13 \\
-12 & -12 & -12 & -12 & -12 & -12 & -1 & -1 & -1 & 60 & -13 \\
-7 & -7 & -7 & -7 & -7 & -7 & -13 & -13 & -13 & -13 & 96
\end{array}\right]
$$

is generated by its 24 minimal vectors, but no set of 11 minimal vectors forms a basis.

