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Quadratic Gauss sums

Let p be an odd prime and let

χp =

(
·
p

)
: (Z/pZ)∗ → {±1} ⊂ C∗

a 7→

{
1 a ≡ � mod p

−1 a 6≡ � mod p

Since χ2
p = 1, it is a quadratic (real) Dirichlet character modulo p.

We define the quadratic Gauss sum g2(p) ∈ C∗ by

g2(p) =

p−1∑
a=0

(
a

p

)
ζap , where ζp = e2πi/p.
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Quadratic Gauss sums
It is not difficult to show that

|g2(p)| =
√
p =⇒ g2(p) = e iθp

√
p.

Gauss showed that

g2(p) =

{
1
√
p p ≡ 1 mod 4

i
√
p p ≡ 3 mod 4.

Demonstrationem rigorosam huius elegantissimi theorematis, per
plures annos olim variis modis incassum tentatum, tandemque per
considerationes singulares satisque subtiles feliciter perfectam...
proferamus.

We will present a rigorous demonstration of this most elegant
theorem, unsuccessfully attempted for many years in various ways,
and finally successfully perfected through singular and quite subtle
considerations...
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Cubic Dirichlet characters
We want

χp : (Z/pZ)∗ → {1, ω, ω2} ⊂ C∗, ω = e2πi/3.

which is multiplicative.

If χp is not trivial, then we must have

3 | p − 1 ⇐⇒ p ≡ 1mod 3.

For p ≡ 1 mod 3, and (a, p) = 1, let

χp(a) =

(
a

p

)
3

≡ a
p−1
3 mod p.

This gives 2 primitive characters modulo p ≡ 1mod 3,

χp, χ
2
p = χp : (Z/pZ)∗ → {1, ω, ω2} ⊂ C∗.
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√
p

g3(p) = e−iθp
√
p

with a unique θp ∈ [0, π] such that

g3(p) + g3(p) = 2
√
p cos θp = g3(χp) + g3(χp).

Kummer (1846) computed θp for 3 ≤ p ≤ 500, p ≡ 1 mod 3, and
how they distribute in the 3 possible intervals

I1 = [0,
π

3
], I2 = [

π

3
,

2π

3
], I3 = [

2π

3
, π].
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Distribution of cubic Gauss sums

Kummer (1846) observed that the angles θp fall in I1, I2 and I3
with statistical frequencies proportional to 3 : 2 : 1 when
3 ≤ p ≤ 500, p ≡ 1mod 3.

Subsequent computations by von Neumann and Goldstine (1953),
Lehmer (1956) and Cassels (1969) seem to indicate statistical
frequencies proportional to 1 : 1 : 1 (equidistribution).

A. I. Vinogradov (1967) published an incorrect proof that
θp ∈ Ii , i = 1, 2, 3 with equal asymptotic frequencies.

Heath-Brown and Patterson (1979) proved that the angles θp are
equidistributed in all intervals (α, β) ⊂ [0, π]. A conjecture of
Patterson explains Kummer’s initial bias (1978).

Assuming GRH, Dunn and Radziwill (2021+) proved (a smooth
version of) Patterson’s conjecture.
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Distribution of cubic Gauss sums

p0 n I1 I2 I3

0 45 24 14 7 Kummer

0 611 272 201 138 von Neumann-Goldstine

0 1000 438 322 240 Lehmer

0 1259 552 416 291 Cassels

25 000 192 83 69 40 Cassels

30 000 119 49 40 30 Cassels

100 000 165 49 68 48 Cassels



Equidistribution

Let u1, u2, . . . be a sequence of real numbers with ui ∈ [a, b]. The
sequence is equidistributed on [a, b] if for each I = (α, β) ⊆ [a, b],
we have

lim
N→∞

#{1 ≤ i ≤ N : ui ∈ (α, β)}
N

=
β − α
b − a

=
1

b − a

∫
I
dx .

Theorem (Weyl’s criterion, 1916)

The sequence u1, u2, . . . is equidistributed on [a, b] iff for each
k 6= 0 ∈ Z,

lim
N→∞

∑N
n=1 e

2πiunk
b−a

N
= 0 ⇐⇒

N∑
n=1

e
2πiunk
b−a =

N∑
n=1

e

(
unk

b − a

)
= o(N).
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Cubic characters on K = Q(ω)

For each prime π ∈ Z[ω], and for a ∈ Z[ω], (a, π) = 1, we have

χπ(a) =
( a
π

)
3
≡ a

N(π)−1
3 mod π ⊂ {1, ω, ω2}.

This gives 2 primitive characters modulo π, χπ and χ2
π = χπ.

Let p, a ∈ Z, p ≡ 1mod 3, and p = ππ and (a, p) = 1. Then,

χp(a) =
( a
π

)
3

or χp(a) =
( a
π

)
3

=
( a
π

)
3
.



Cubic characters on K = Q(ω)

For each prime π ∈ Z[ω], and for a ∈ Z[ω], (a, π) = 1, we have

χπ(a) =
( a
π

)
3
≡ a

N(π)−1
3 mod π ⊂ {1, ω, ω2}.

This gives 2 primitive characters modulo π, χπ and χ2
π = χπ.

Let p, a ∈ Z, p ≡ 1mod 3, and p = ππ and (a, p) = 1. Then,

χp(a) =
( a
π

)
3

or χp(a) =
( a
π

)
3

=
( a
π

)
3
.



Cubic Gauss sums modulo c ∈ Z[ω]

We define for any c ∈ Z[ω], c ≡ 1mod 3

g3(c) =
∑

a mod c

(a
c

)
3
e
(a
c

)
, e(z) := e2πi(z+z)

g̃3(c) =
g3(c)

N(c)
1
2

Gauss showed that for any c ∈ Z[ω], c ≡ 1 mod 3

g̃3(c)3 = µ(c)
c2 c

|c |3
.

We have for p ≡ 1mod 3, p = ππ,

{g̃3(χp), g̃3(χp)} = {g̃3(π), g̃3(π)} = {e iθp , e−iθp}
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Cubic and general Gauss sums at prime arguments

By Weyl’s criterion, the angles θp are equidistributed in [0, π] iff
for all integers k 6= 0∑

N(π)≤X
π∈Z[ω] prime
π≡1 mod 3

g̃3(π)k = o(π(X )) = o

(
X

logX

)
.

Conjecture (Patterson, 1978)∑
N(π)≤X

π∈Z[ω] prime
π≡1 mod 3

g̃3(π) ∼ 2(2π)2/3

5Γ(23)

X 5/6

logX
.

Patterson’s conjecture (a smooth version of) was proven Dunn and
Radziwill (2021+), under GRH.
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Cubic Gauss sums at prime arguments

∑
N(c)≤X
c∈Z[ω]

c≡1 mod 3

g̃3(c) Λ(c)� X 30/31+ε (Heath-Brown and Patterson, 1979)

∑
N(c)≤X
c∈Z[ω]

c≡1 mod 3

g̃3(c) Λ(c)� X 5/6+ε (Heath-Brown, 2000)

For a general number fields K such that ζn ∈ K , let S be a set of
places of K containing the places at ∞, and large enough such
that OS

K , the ring of S-integers, is a PID. Then (Patterson, 1985)∑
c∈OS

K
N(c)≤X

c mod xUn(S)

g̃n(c)Λ(c)�K X 1−θn(K)+ε + X 19/20+ε.
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Quartic Gauss sums at prime argument

Theorem (D-Dunn-Hamieh-Lin, 2023)

For any c ∈ Z[i ], c ≡ 1modλ3, with λ = 1 + i , let

g4(c) =
∑

a mod c

(a
c

)
4
e

(
a

q

)
, e(z) := e2πi(z+z)

g̃4(c) =
g4(c)

N(c)
1
2

For quartic Gauss sums g̃4(c), with β ∈ {1, 1 + λ3}∑
N(c)≤X
c∈Z[i ]

c≡β mod 4

g̃4(c)Λ(c)� X 5/6+ε.



Quartic Gauss sums at prime argument

Conjecture (Quartic Gauss sums at prime argument)

For β ∈ {1, 1 + λ3} mod 4, there exists a constant bβ 6= 0 such
that for any ε > 0 and ` ∈ Z,

∑
c∈Z[i ]
N(c)≤X

c≡β mod 4

g̃4(c)
( c

|c |

)`
Λ(c) =

{
bβX

3/4 + Oε(X
1/2+ε) if ` = 0

Oε,`(X
1/2+ε) if ` 6= 0

,



Quartic Gauss sums at integral argument

What about∑
c∈Z[i ]

c≡β mod 4

g̃4(c)R

(
N(c)

X

)
?

=
1

2πi

∫
(σ)
ψ
(4)
β (s) X s R̂(s)ds

where ψ
(4)
β (s) =

∑
c∈Z[i ]

c≡βmod 4

g̃4(c)

N(c)s
cvgs absolutely for <(s) > 1.

Note that for (c1, c2) = 1, c1, c2 ≡ βmod 4,

g̃4(c1c2) =
∑

a mod c1c2

(
a

c1c2

)
4

e

(
a

c1c2

)

=

(
c1
c2

)
4

(
c2
c1

)
4

g̃4(c1)g̃4(c2).
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g̃4(c1c2) =
∑

a mod c1c2

(
a

c1c2

)
4

e

(
a

c1c2

)

=

(
c1
c2

)
4

(
c2
c1

)
4

g̃4(c1)g̃4(c2).
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Metaplectic forms

• Weil (1953) observed that the (complex) θ-function which
transforms as

θ

(
az + b

cz + d

)
= εd

( c
d

)√
cz + d θ(z), εd =

{
1 d ≡ 1 mod 4

i d ≡ 3 mod 4

can be thought as an automorphic form on G̃L2, the two-fold
metaplectic cover of GL2.

• Kubota (1969, 1971) generalized that to the n-fold cover of
GL2(A).

• For cubic Gauss sums, Patterson (1977) computed the
functional equation and the residue of the pole at s = 5

6 .

• For quartic Gauss sums, Suzuki (1983) computed the
functional equation and the residue of the pole at s = 3

4 in
certain cases.
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Shifted quartic Gauss sums

Let

g4(ν, c) =
∑

a mod c

(a
c

)
4
e

(
νa

q

)
ψ̃
(4)
β (s, ν) :=

∑
c∈Z[i ]

c≡βmod 4

g̃4(ν, c)

N(c)s

which converges absolutely for <(s) > 1.

Let

ψ
(4)
β (ν) := Ress=3/4ψ̃

(4)
β (s, ν) = Ress=5/4ψ

(4)
β (s, ν).
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Functional Equation

Theorem
The functions ψ

(4)
i1 (s, ν), 0 6= ν ∈ Z[i ], and i = 1, . . . , 24 can be

meromorphically extended to C, with at most two simple poles at
s = 5/4 and s = 3/4. The functions are bounded in vertical strips
and satisfy the functional equation

ψ
(4)
i1 (s, ν) = N(ν)1−s

24∑
i=1

Aji (2−s)ψ
(4)
i1 (2− s, ν).

For ε > 0, we have for 1 + ε < σ < 3
2 + ε and

∣∣s − 5
4

∣∣ > 1
8 ,

ψ
(4)
i1 (ν, s)�ε,ordλ(ν) N(ν)

1
2
( 3
2
−σ)+ε(|s|+ 1)

3
2
( 3
2
−σ)+ε

ψ
(4)
i1 (ν)� N(ν)

1
8



Can we do better than convexity?

By the work of Suzuki (1983), for m square-free and (m, ν) = 1,

ψ
(4)
β (m4ν) = ψ

(4)
β (ν)

ψ
(4)
β (m3ν) = 0

ψ
(4)
β (m2ν) =



g̃4(ν,m)

N(m)
1
4

ψ
(4)
β (ν) m ≡ 1 mod 4

g̃4(ν,m)

N(m)
1
4

ψ
(4)
β (ν) m ≡ 1 + λ3 mod 4

It is conjectured that for all m ∈ Z[i ] square-free,

|ψ(4)
β (m)| =

1

N(m)
1
8

.
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Back to quartic Gauss sums at integral argument

Let m ∈ Z[i ] be square-free, then∑
c∈Z[i ]

c≡β mod 4

g̃4(m2, c)R

(
N(c)

X

)

=
1

2πi

∫
(σ)
ψ
(4)
β (s + 1

2 ,m
2)X s R̂(s)ds

=
cβ,m

N(m2)
1
8

X
3
4 + O

(
X

1
2
+εN(m2)

1
4
+ε
)



From integers to primes : Vaughan’s identity

Let

Hβ(X ) =
∑
c∈Z[i ]

c≡βmod 4

Λ(c)g̃(c)R

(
N(c)

X

)

Σj ,β(X , u) =
∑
a,b,c

Λ(a)µ(b)g̃(abc)R

(
N(abc)

X

)

where a, b, c ∈ Z[i ] such that abc ≡ β mod 4, and some
j-conditions on the size of a, b, c ..
Then,

Hβ(X ) + Σ2′(X , u) + Σ2′′(X , u) + Σ3(X , u) = Σ1(X , u).



Type 1 and Type 2 sums

Σj ,β(X , u) =
∑

a,b,c∈Z[i ]
a,b,c≡1 mod λ3

abc≡βmod 4

Λ(a)µ(b)g̃(abc)R

(
N(abc)

X

)

where for 1 ≤ u ≤ X 1/2,

N(b) ≤ u for j = 1,

N(ab) ≤ u for j = 2′,

N(a),N(b) ≤ u < N(ab) for j = 2′′,

N(b) ≤ u < N(a),N(bc) for j = 3,



Bounding Type 1 sums
For Type 1 sums, using Patterson’s and Suzuki’s work, and an
extra averaging using the quadratic large sieve, we get

Σ1,β(X , u), Σ2′,β(X , u)

� X ε
∑

N(α)≤u

µ2(α)
∑
c∈Z[i ]

c≡βmod 4
c≡0modα

g̃4(c)R

(
N(c)

X

)

�ε X
3
4
+ε

which is equivalent to Heath-Brown for cubic (2000): X
5
6
+ε.

By properties of quartic Gauss sums, for (α, c) = 1,

g4(ν, αc) =
( c
α

)
4

(α
c

)
4
g4(ν, α)g4(ν, c)

= (−1)C(α,c)g4(ν, α)g4(να2, c)
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Bounding Type 2 sums

For Type 2 sums, using the Quadratic Large Sieve over Q(i), we
have

Σ2′′,β(X , u),Σ3,β(X , u)� X ε
(
X

1
2 u + Xu−

1
2

)
� X

5
6
+ε,

taking u = X
1
3 .


