Equidistribution of quartic Gauss sums at primes arguments

Joint work with
A. Dunn (Georgia Tech), A. Hamieh (UNBC) and H. Lin (Northwestern)

Chantal David, Concordia University, Montreal

Alberta Number Theory Days XV
Banff, March 2024

Quadratic Gauss sums

Quadratic Gauss sums

Let p be an odd prime and let

$$
\begin{aligned}
\chi_{p}=\left(\frac{\bar{p}}{p}\right):(\mathbb{Z} / p \mathbb{Z})^{*} & \rightarrow\{ \pm 1\} \subset \mathbb{C}^{*} \\
a & \mapsto \begin{cases}1 & a \equiv \square \bmod p \\
-1 & a \not \equiv \square \bmod p\end{cases}
\end{aligned}
$$

Since $\chi_{p}^{2}=1$, it is a quadratic (real) Dirichlet character modulo p.

Quadratic Gauss sums

Let p be an odd prime and let

$$
\begin{aligned}
\chi_{p}=\left(\frac{\bar{p}}{p}\right):(\mathbb{Z} / p \mathbb{Z})^{*} & \rightarrow\{ \pm 1\} \subset \mathbb{C}^{*} \\
a & \mapsto \begin{cases}1 & a \equiv \square \bmod p \\
-1 & a \not \equiv \square \bmod p\end{cases}
\end{aligned}
$$

Since $\chi_{p}^{2}=1$, it is a quadratic (real) Dirichlet character modulo p. We define the quadratic Gauss sum $g_{2}(p) \in \mathbb{C}^{*}$ by

$$
g_{2}(p)=\sum_{a=0}^{p-1}\left(\frac{a}{p}\right) \zeta_{p}^{a}, \quad \text { where } \zeta_{p}=e^{2 \pi i / p}
$$

Quadratic Gauss sums

It is not difficult to show that

$$
\left|g_{2}(p)\right|=\sqrt{p} \Longrightarrow g_{2}(p)=e^{i \theta_{p}} \sqrt{p}
$$

Quadratic Gauss sums

It is not difficult to show that

$$
\left|g_{2}(p)\right|=\sqrt{p} \Longrightarrow g_{2}(p)=e^{i \theta_{p}} \sqrt{p}
$$

Gauss showed that

$$
g_{2}(p)= \begin{cases}1 \sqrt{p} & p \equiv 1 \bmod 4 \\ i \sqrt{p} & p \equiv 3 \bmod 4\end{cases}
$$

Quadratic Gauss sums

It is not difficult to show that

$$
\left|g_{2}(p)\right|=\sqrt{p} \Longrightarrow g_{2}(p)=e^{i \theta_{p}} \sqrt{p}
$$

Gauss showed that

$$
g_{2}(p)= \begin{cases}1 \sqrt{p} & p \equiv 1 \bmod 4 \\ i \sqrt{p} & p \equiv 3 \bmod 4\end{cases}
$$

Demonstrationem rigorosam huius elegantissimi theorematis, per plures annos olim variis modis incassum tentatum, tandemque per considerationes singulares satisque subtiles feliciter perfectam... proferamus.

Quadratic Gauss sums

It is not difficult to show that

$$
\left|g_{2}(p)\right|=\sqrt{p} \Longrightarrow g_{2}(p)=e^{i \theta_{p}} \sqrt{p}
$$

Gauss showed that

$$
g_{2}(p)= \begin{cases}1 \sqrt{p} & p \equiv 1 \bmod 4 \\ i \sqrt{p} & p \equiv 3 \bmod 4\end{cases}
$$

Demonstrationem rigorosam huius elegantissimi theorematis, per plures annos olim variis modis incassum tentatum, tandemque per considerationes singulares satisque subtiles feliciter perfectam... proferamus.

We will present a rigorous demonstration of this most elegant theorem, unsuccessfully attempted for many years in various ways, and finally successfully perfected through singular and quite subtle considerations...

Cubic Dirichlet characters

We want

$$
\chi_{p}:(\mathbb{Z} / p \mathbb{Z})^{*} \rightarrow\left\{1, \omega, \omega^{2}\right\} \subset \mathbb{C}^{*}, \omega=e^{2 \pi i / 3}
$$

which is multiplicative.

Cubic Dirichlet characters

We want

$$
\chi_{p}:(\mathbb{Z} / p \mathbb{Z})^{*} \rightarrow\left\{1, \omega, \omega^{2}\right\} \subset \mathbb{C}^{*}, \omega=e^{2 \pi i / 3}
$$

which is multiplicative.
If χ_{p} is not trivial, then we must have

$$
3 \mid p-1 \Longleftrightarrow p \equiv 1 \bmod 3
$$

For $p \equiv 1 \bmod 3$, and $(a, p)=1$, let

$$
\chi_{p}(a)=\left(\frac{a}{p}\right)_{3} \equiv a^{\frac{p-1}{3}} \bmod p .
$$

Cubic Dirichlet characters

We want

$$
\chi_{p}:(\mathbb{Z} / p \mathbb{Z})^{*} \rightarrow\left\{1, \omega, \omega^{2}\right\} \subset \mathbb{C}^{*}, \omega=e^{2 \pi i / 3}
$$

which is multiplicative.
If χ_{p} is not trivial, then we must have

$$
3 \mid p-1 \Longleftrightarrow p \equiv 1 \bmod 3
$$

For $p \equiv 1 \bmod 3$, and $(a, p)=1$, let

$$
\chi_{p}(a)=\left(\frac{a}{p}\right)_{3} \equiv a^{\frac{p-1}{3}} \bmod p .
$$

This gives 2 primitive characters modulo $p \equiv 1 \bmod 3$,

$$
\chi_{p}, \chi_{p}^{2}=\bar{\chi}_{p}:(\mathbb{Z} / p \mathbb{Z})^{*} \rightarrow\left\{1, \omega, \omega^{2}\right\} \subset \mathbb{C}^{*}
$$

Cubic Gauss sums

Let $p \equiv 1 \bmod 3$, and

$$
g_{3}(p)=\sum_{a=0}^{p-1}\left(\frac{a}{p}\right)_{3} \zeta_{p}^{a}, \quad \text { where } \zeta_{p}=e^{2 \pi i / p}
$$

Cubic Gauss sums

Let $p \equiv 1 \bmod 3$, and

$$
g_{3}(p)=\sum_{a=0}^{p-1}\left(\frac{a}{p}\right)_{3} \zeta_{p}^{a}, \quad \text { where } \zeta_{p}=e^{2 \pi i / p}
$$

Again, it is not difficult to show that

$$
\left|g_{3}(p)\right|=\sqrt{p} \Longrightarrow \begin{aligned}
g_{3}(p) & =e^{i \theta_{p}} \sqrt{p} \\
\overline{g_{3}(p)} & =e^{-i \theta_{p}} \sqrt{p}
\end{aligned}
$$

with a unique $\theta_{p} \in[0, \pi]$ such that

$$
g_{3}(p)+\overline{g_{3}(p)}=2 \sqrt{p} \cos \theta_{p}=g_{3}\left(\chi_{p}\right)+g_{3}\left(\bar{\chi}_{p}\right)
$$

Cubic Gauss sums

Let $p \equiv 1 \bmod 3$, and

$$
g_{3}(p)=\sum_{a=0}^{p-1}\left(\frac{a}{p}\right)_{3} \zeta_{p}^{a}, \quad \text { where } \zeta_{p}=e^{2 \pi i / p}
$$

Again, it is not difficult to show that

$$
\begin{aligned}
&\left|g_{3}(p)\right|=\sqrt{p} \Longrightarrow \begin{array}{l}
g_{3}(p)
\end{array}=e^{i \theta_{p}} \sqrt{p} \\
& \overline{g_{3}(p)}=e^{-i \theta_{p}} \sqrt{p}
\end{aligned}
$$

with a unique $\theta_{p} \in[0, \pi]$ such that

$$
g_{3}(p)+\overline{g_{3}(p)}=2 \sqrt{p} \cos \theta_{p}=g_{3}\left(\chi_{p}\right)+g_{3}\left(\bar{\chi}_{p}\right)
$$

Kummer (1846) computed θ_{p} for $3 \leq p \leq 500, p \equiv 1 \bmod 3$, and how they distribute in the 3 possible intervals

$$
I_{1}=\left[0, \frac{\pi}{3}\right], \quad I_{2}=\left[\frac{\pi}{3}, \frac{2 \pi}{3}\right], \quad I_{3}=\left[\frac{2 \pi}{3}, \pi\right] .
$$

Distribution of cubic Gauss sums

Kummer (1846) observed that the angles θ_{p} fall in I_{1}, I_{2} and I_{3} with statistical frequencies proportional to $3: 2: 1$ when $3 \leq p \leq 500, p \equiv 1 \bmod 3$.

Distribution of cubic Gauss sums

Kummer (1846) observed that the angles θ_{p} fall in I_{1}, I_{2} and I_{3} with statistical frequencies proportional to $3: 2: 1$ when $3 \leq p \leq 500, p \equiv 1 \bmod 3$.

Subsequent computations by von Neumann and Goldstine (1953), Lehmer (1956) and Cassels (1969) seem to indicate statistical frequencies proportional to $1: 1: 1$ (equidistribution).

Distribution of cubic Gauss sums

Kummer (1846) observed that the angles θ_{p} fall in I_{1}, I_{2} and I_{3} with statistical frequencies proportional to $3: 2: 1$ when $3 \leq p \leq 500, p \equiv 1 \bmod 3$.

Subsequent computations by von Neumann and Goldstine (1953), Lehmer (1956) and Cassels (1969) seem to indicate statistical frequencies proportional to $1: 1: 1$ (equidistribution).
A. I. Vinogradov (1967) published an incorrect proof that $\theta_{p} \in I_{i}, i=1,2,3$ with equal asymptotic frequencies.

Distribution of cubic Gauss sums

Kummer (1846) observed that the angles θ_{p} fall in I_{1}, I_{2} and I_{3} with statistical frequencies proportional to $3: 2: 1$ when $3 \leq p \leq 500, p \equiv 1 \bmod 3$.

Subsequent computations by von Neumann and Goldstine (1953), Lehmer (1956) and Cassels (1969) seem to indicate statistical frequencies proportional to $1: 1: 1$ (equidistribution).
A. I. Vinogradov (1967) published an incorrect proof that $\theta_{p} \in I_{i}, i=1,2,3$ with equal asymptotic frequencies.

Heath-Brown and Patterson (1979) proved that the angles θ_{p} are equidistributed in all intervals $(\alpha, \beta) \subset[0, \pi]$. A conjecture of Patterson explains Kummer's initial bias (1978).

Distribution of cubic Gauss sums

Kummer (1846) observed that the angles θ_{p} fall in I_{1}, I_{2} and I_{3} with statistical frequencies proportional to $3: 2: 1$ when $3 \leq p \leq 500, p \equiv 1 \bmod 3$.

Subsequent computations by von Neumann and Goldstine (1953), Lehmer (1956) and Cassels (1969) seem to indicate statistical frequencies proportional to $1: 1: 1$ (equidistribution).
A. I. Vinogradov (1967) published an incorrect proof that $\theta_{p} \in I_{i}, i=1,2,3$ with equal asymptotic frequencies.

Heath-Brown and Patterson (1979) proved that the angles θ_{p} are equidistributed in all intervals $(\alpha, \beta) \subset[0, \pi]$. A conjecture of Patterson explains Kummer's initial bias (1978).

Assuming GRH, Dunn and Radziwill (2021+) proved (a smooth version of) Patterson's conjecture.

Distribution of cubic Gauss sums

p_{0}	n	I_{1}	I_{2}	I_{3}	
0	45	24	14	7	Kummer
0	611	272	201	138	von Neumann-Goldstine
0	1000	438	322	240	Lehmer
0	1259	552	416	291	Cassels
25000	192	83	69	40	Cassels
30000	119	49	40	30	Cassels
100000	165	49	68	48	Cassels

Equidistribution

Let u_{1}, u_{2}, \ldots be a sequence of real numbers with $u_{i} \in[a, b]$. The sequence is equidistributed on $[a, b]$ if for each $I=(\alpha, \beta) \subseteq[a, b]$, we have

$$
\lim _{N \rightarrow \infty} \frac{\#\left\{1 \leq i \leq N: u_{i} \in(\alpha, \beta)\right\}}{N}
$$

Equidistribution

Let u_{1}, u_{2}, \ldots be a sequence of real numbers with $u_{i} \in[a, b]$. The sequence is equidistributed on $[a, b]$ if for each $I=(\alpha, \beta) \subseteq[a, b]$, we have

$$
\lim _{N \rightarrow \infty} \frac{\#\left\{1 \leq i \leq N: u_{i} \in(\alpha, \beta)\right\}}{N}=\frac{\beta-\alpha}{b-a}=\frac{1}{b-a} \int_{I} d x .
$$

Equidistribution

Let u_{1}, u_{2}, \ldots be a sequence of real numbers with $u_{i} \in[a, b]$. The sequence is equidistributed on $[a, b]$ if for each $I=(\alpha, \beta) \subseteq[a, b]$, we have

$$
\lim _{N \rightarrow \infty} \frac{\#\left\{1 \leq i \leq N: u_{i} \in(\alpha, \beta)\right\}}{N}=\frac{\beta-\alpha}{b-a}=\frac{1}{b-a} \int_{1} d x .
$$

Theorem (Weyl's criterion, 1916)
The sequence u_{1}, u_{2}, \ldots is equidistributed on $[a, b]$ iff for each $k \neq 0 \in \mathbb{Z}$,
$\lim _{N \rightarrow \infty} \frac{\sum_{n=1}^{N} e^{\frac{2 \pi i i_{n} k}{b-a}}}{N}=0 \Longleftrightarrow \sum_{n=1}^{N} e^{\frac{2 \pi i i_{n} k}{b-a}}=\sum_{n=1}^{N} e\left(\frac{u_{n} k}{b-a}\right)=o(N)$.

Cubic characters on $K=\mathbb{Q}(\omega)$

For each prime $\pi \in \mathbb{Z}[\omega]$, and for $a \in \mathbb{Z}[\omega],(a, \pi)=1$, we have

$$
\chi_{\pi}(a)=\left(\frac{a}{\pi}\right)_{3} \equiv a^{\frac{N(\pi)-1}{3}} \bmod \pi \subset\left\{1, \omega, \omega^{2}\right\} .
$$

This gives 2 primitive characters modulo π, χ_{π} and $\chi_{\pi}^{2}=\bar{\chi}_{\pi}$.

Cubic characters on $K=\mathbb{Q}(\omega)$

For each prime $\pi \in \mathbb{Z}[\omega]$, and for $a \in \mathbb{Z}[\omega],(a, \pi)=1$, we have

$$
\chi_{\pi}(a)=\left(\frac{a}{\pi}\right)_{3} \equiv a^{\frac{N(\pi)-1}{3}} \bmod \pi \subset\left\{1, \omega, \omega^{2}\right\} .
$$

This gives 2 primitive characters modulo π, χ_{π} and $\chi_{\pi}^{2}=\bar{\chi}_{\pi}$.

Let $p, a \in \mathbb{Z}, p \equiv 1 \bmod 3$, and $p=\pi \bar{\pi}$ and $(a, p)=1$. Then,

$$
\chi_{p}(a)=\left(\frac{a}{\pi}\right)_{3} \text { or } \chi_{p}(a)=\overline{\left(\frac{a}{\pi}\right)_{3}}=\left(\frac{a}{\bar{\pi}}\right)_{3} .
$$

Cubic Gauss sums modulo $c \in \mathbb{Z}[\omega]$

We define for any $c \in \mathbb{Z}[\omega], c \equiv 1 \bmod 3$

$$
\begin{aligned}
& g_{3}(c)=\sum_{a \bmod c}\left(\frac{a}{c}\right)_{3} \mathbf{e}\left(\frac{a}{c}\right), \mathbf{e}(z):=e^{2 \pi i(z+\bar{z})} \\
& \tilde{g}_{3}(c)=\frac{g_{3}(c)}{N(c)^{\frac{1}{2}}}
\end{aligned}
$$

Cubic Gauss sums modulo $c \in \mathbb{Z}[\omega]$

We define for any $c \in \mathbb{Z}[\omega], c \equiv 1 \bmod 3$

$$
\begin{aligned}
& g_{3}(c)=\sum_{a \bmod c}\left(\frac{a}{c}\right)_{3} \mathbf{e}\left(\frac{a}{c}\right), \mathbf{e}(z):=e^{2 \pi i(z+\bar{z})} \\
& \tilde{g}_{3}(c)=\frac{g_{3}(c)}{N(c)^{\frac{1}{2}}}
\end{aligned}
$$

Gauss showed that for any $c \in \mathbb{Z}[\omega], c \equiv 1 \bmod 3$

$$
\tilde{g}_{3}(c)^{3}=\mu(c) \frac{c^{2} \bar{c}}{|c|^{3}} .
$$

Cubic Gauss sums modulo $c \in \mathbb{Z}[\omega]$

We define for any $c \in \mathbb{Z}[\omega], c \equiv 1 \bmod 3$

$$
\begin{aligned}
& g_{3}(c)=\sum_{a \bmod c}\left(\frac{a}{c}\right)_{3} \mathbf{e}\left(\frac{a}{c}\right), \mathbf{e}(z):=e^{2 \pi i(z+\bar{z})} \\
& \tilde{g}_{3}(c)=\frac{g_{3}(c)}{N(c)^{\frac{1}{2}}}
\end{aligned}
$$

Gauss showed that for any $c \in \mathbb{Z}[\omega], c \equiv 1 \bmod 3$

$$
\tilde{g}_{3}(c)^{3}=\mu(c) \frac{c^{2} \bar{c}}{|c|^{3}} .
$$

We have for $p \equiv 1 \bmod 3, p=\pi \bar{\pi}$,

$$
\left\{\tilde{g}_{3}\left(\chi_{p}\right), \tilde{g}_{3}\left(\bar{\chi}_{p}\right)\right\}=\left\{\tilde{g}_{3}(\pi), \tilde{g}_{3}(\bar{\pi})\right\}=\left\{e^{i \theta_{p}}, e^{-i \theta_{p}}\right\}
$$

Cubic and general Gauss sums at prime arguments

By Weyl's criterion, the angles θ_{p} are equidistributed in $[0, \pi]$ iff for all integers $k \neq 0$

$$
\sum_{\substack{N(\pi) \leq X \\ \pi \in \mathbb{Z}[\omega] \text { prime } \\ \pi \equiv 1 \bmod 3}} \tilde{g}_{3}(\pi)^{k}=o(\pi(X))=o\left(\frac{X}{\log X}\right)
$$

Cubic and general Gauss sums at prime arguments

By Weyl's criterion, the angles θ_{p} are equidistributed in $[0, \pi]$ iff for all integers $k \neq 0$

$$
\sum_{\substack{N(\pi) \leq X \\ \pi \in \mathbb{Z}[\omega] \text { prime } \\ \pi \equiv 1 \bmod 3}} \widetilde{g}_{3}(\pi)^{k}=o(\pi(X))=o\left(\frac{X}{\log X}\right) .
$$

Conjecture (Patterson, 1978)

$$
\sum_{\substack{N(\pi) \leq X \\ \pi \in \mathbb{Z}[\omega] \text { prime } \\ \pi \equiv 1 \bmod 3}} \tilde{g}_{3}(\pi) \sim \frac{2(2 \pi)^{2 / 3}}{5 \Gamma\left(\frac{2}{3}\right)} \frac{X^{5 / 6}}{\log X}
$$

Cubic and general Gauss sums at prime arguments

By Weyl's criterion, the angles θ_{p} are equidistributed in $[0, \pi]$ iff for all integers $k \neq 0$

$$
\sum_{\substack{N(\pi) \leq X \\ \pi \in \mathbb{Z}[\omega] \text { prime } \\ \pi \equiv 1 \bmod 3}} \widetilde{g}_{3}(\pi)^{k}=o(\pi(X))=o\left(\frac{X}{\log X}\right) .
$$

Conjecture (Patterson, 1978)

$$
\sum_{\substack{N(\pi) \leq X \\ \pi \in \mathbb{Z}[\omega] \\ \pi \equiv 1 \bmod 3 \\ \hline}} \widetilde{g}_{3}(\pi) \sim \frac{2(2 \pi)^{2 / 3}}{5 \Gamma\left(\frac{2}{3}\right)} \frac{X^{5 / 6}}{\log X} .
$$

Patterson's conjecture (a smooth version of) was proven Dunn and Radziwill (2021+), under GRH.

Cubic Gauss sums at prime arguments

$$
\sum_{\substack{N(c) \leq X \\ c \in \mathbb{Z}[\omega] \\ c \equiv 1 \bmod 3}} \widetilde{g}_{3}(c) \wedge(c) \ll X^{30 / 31+\varepsilon} \text { (Heath-Brown and Patterson, 1979) }
$$

Cubic Gauss sums at prime arguments

$$
\sum_{\substack{N(c) \leq X \\ c \in \mathbb{Z}[\omega] \\ c \equiv 1 \bmod 3}} \widetilde{g}_{3}(c) \wedge(c) \ll X^{30 / 31+\varepsilon} \quad \widetilde{g}_{3}(c) \wedge(c) \ll X^{5 / 6+\varepsilon} \text { (Heath-Brown and Patterson, 1979) }
$$

Cubic Gauss sums at prime arguments

$$
\sum_{\substack{N(c) \leq X \\ c \in \mathbb{L}[\omega] \\ c \equiv 1 \bmod 3}} \widetilde{g}_{3}(c) \wedge(c) \ll X^{30 / 31+\varepsilon} \text { (Heath-Brown and } \mathrm{P}
$$

For a general number fields K such that $\zeta_{n} \in K$, let S be a set of places of K containing the places at ∞, and large enough such that \mathcal{O}_{K}^{S}, the ring of S-integers, is a PID. Then (Patterson, 1985)

$$
\begin{gathered}
N(c) \leq X \\
c \bmod ^{\times} U_{n}(S)
\end{gathered}
$$

Quartic Gauss sums at prime argument

Theorem (D-Dunn-Hamieh-Lin, 2023)
For any $c \in \mathbb{Z}[i], c \equiv 1 \bmod \lambda^{3}$, with $\lambda=1+i$, let

$$
\begin{aligned}
& g_{4}(c)=\sum_{a \bmod c}\left(\frac{a}{c}\right)_{4} \mathbf{e}\left(\frac{a}{q}\right), \mathbf{e}(z):=e^{2 \pi i(z+\bar{z})} \\
& \widetilde{g}_{4}(c)=\frac{g_{4}(c)}{N(c)^{\frac{1}{2}}}
\end{aligned}
$$

For quartic Gauss sums $\widetilde{g}_{4}(c)$, with $\beta \in\left\{1,1+\lambda^{3}\right\}$

$$
\sum_{\substack{N(c) \leq X \\ c \in \mathbb{Z}[i] \\ c \equiv \beta \bmod 4}} \tilde{g}_{4}(c) \Lambda(c) \ll X^{5 / 6+\varepsilon}
$$

Quartic Gauss sums at prime argument

Conjecture (Quartic Gauss sums at prime argument)

For $\beta \in\left\{1,1+\lambda^{3}\right\} \bmod 4$, there exists a constant $b_{\beta} \neq 0$ such that for any $\varepsilon>0$ and $\ell \in \mathbb{Z}$,

$$
\begin{aligned}
& \sum_{\substack{c \in \mathbb{Z}[i] \\
N(c) \leq X \\
c \equiv \beta \bmod 4}} \tilde{g}_{4}(c)\left(\frac{\bar{c}}{|c|}\right)^{\ell} \Lambda(c)= \begin{cases}b_{\beta} X^{3 / 4}+O_{\varepsilon}\left(X^{1 / 2+\varepsilon}\right) & \text { if } \ell=0 \\
O_{\varepsilon, \ell}\left(X^{1 / 2+\varepsilon}\right) & \text { if } \ell \neq 0\end{cases} \\
& \hline \beta \text { m }
\end{aligned}
$$

Quartic Gauss sums at integral argument

What about

$$
\sum_{\substack{c \in \mathbb{Z}[i] \\ c \equiv \beta \bmod 4}} \widetilde{g}_{4}(c) R\left(\frac{N(c)}{X}\right) ?
$$

Quartic Gauss sums at integral argument

What about

$$
\sum_{\substack{c \in \mathbb{Z}[i] \\ c \equiv \beta \bmod 4}} \widetilde{g}_{4}(c) R\left(\frac{N(c)}{X}\right)=\frac{1}{2 \pi i} \int_{(\sigma)} \psi_{\beta}^{(4)}(s) X^{s} \widehat{R}(s) d s
$$

where $\psi_{\beta}^{(4)}(s)=\sum_{\substack{c \in \mathbb{Z}[i] \\ c \equiv \beta \bmod 4}} \frac{\widetilde{g}_{4}(c)}{N(c)^{s}}$ cvgs absolutely for $\Re(s)>1$.

Quartic Gauss sums at integral argument

What about

$$
\sum_{c \in \mathbb{Z}[i]} \widetilde{g}_{4}(c) R\left(\frac{N(c)}{X}\right)=\frac{1}{2 \pi i} \int_{(\sigma)} \psi_{\beta}^{(4)}(s) X^{s} \widehat{R}(s) d s
$$

$c \equiv \beta \bmod 4$
where $\psi_{\beta}^{(4)}(s)=\sum_{\substack{c \in \mathbb{Z}[i] \\ c \equiv \beta \bmod 4}} \frac{\widetilde{g}_{4}(c)}{N(c)^{s}}$ cvgs absolutely for $\Re(s)>1$.
Note that for $\left(c_{1}, c_{2}\right)=1, c_{1}, c_{2} \equiv \beta \bmod 4$,

$$
\widetilde{g}_{4}\left(c_{1} c_{2}\right)=\sum_{a \bmod c_{1} c_{2}}\left(\frac{a}{c_{1} c_{2}}\right)_{4} \mathbf{e}\left(\frac{a}{c_{1} c_{2}}\right)
$$

Quartic Gauss sums at integral argument

What about

$$
\sum_{\substack{c \in \mathbb{Z}[i] \\ c \equiv \beta \bmod 4}} \widetilde{g}_{4}(c) R\left(\frac{N(c)}{X}\right)=\frac{1}{2 \pi i} \int_{(\sigma)} \psi_{\beta}^{(4)}(s) X^{s} \widehat{R}(s) d s
$$

where $\psi_{\beta}^{(4)}(s)=\sum_{\substack{c \in \mathbb{Z}[i] \\ c \equiv \beta \bmod 4}} \frac{\widetilde{g}_{4}(c)}{N(c)^{s}}$ cvgs absolutely for $\Re(s)>1$.
Note that for $\left(c_{1}, c_{2}\right)=1, c_{1}, c_{2} \equiv \beta \bmod 4$,

$$
\begin{aligned}
\widetilde{g}_{4}\left(c_{1} c_{2}\right) & =\sum_{a \bmod c_{1} c_{2}}\left(\frac{a}{c_{1} c_{2}}\right)_{4} \mathbf{e}\left(\frac{a}{c_{1} c_{2}}\right) \\
& =\left(\frac{c_{1}}{c_{2}}\right)_{4}\left(\frac{c_{2}}{c_{1}}\right)_{4} \widetilde{g}_{4}\left(c_{1}\right) \widetilde{g}_{4}\left(c_{2}\right) .
\end{aligned}
$$

Metaplectic forms

- Weil (1953) observed that the (complex) θ-function which transforms as

$$
\theta\left(\frac{a z+b}{c z+d}\right)=\epsilon_{d}\left(\frac{c}{d}\right) \sqrt{c z+d} \theta(z), \quad \epsilon_{d}= \begin{cases}1 & d \equiv 1 \bmod 4 \\ i & d \equiv 3 \bmod 4\end{cases}
$$

can be thought as an automorphic form on $\widetilde{G L}_{2}$, the two-fold metaplectic cover of GL_{2}.

Metaplectic forms

- Weil (1953) observed that the (complex) θ-function which transforms as

$$
\theta\left(\frac{a z+b}{c z+d}\right)=\epsilon_{d}\left(\frac{c}{d}\right) \sqrt{c z+d} \theta(z), \quad \epsilon_{d}= \begin{cases}1 & d \equiv 1 \bmod 4 \\ i & d \equiv 3 \bmod 4\end{cases}
$$

can be thought as an automorphic form on $\widetilde{\mathrm{GL}}_{2}$, the two-fold metaplectic cover of GL_{2}.

- Kubota $(1969,1971)$ generalized that to the n-fold cover of $\mathrm{GL}_{2}(\mathbb{A})$.

Metaplectic forms

- Weil (1953) observed that the (complex) θ-function which transforms as

$$
\theta\left(\frac{a z+b}{c z+d}\right)=\epsilon_{d}\left(\frac{c}{d}\right) \sqrt{c z+d} \theta(z), \quad \epsilon_{d}= \begin{cases}1 & d \equiv 1 \bmod 4 \\ i & d \equiv 3 \bmod 4\end{cases}
$$

can be thought as an automorphic form on $\widetilde{G L}_{2}$, the two-fold metaplectic cover of GL_{2}.

- Kubota $(1969,1971)$ generalized that to the n-fold cover of $\mathrm{GL}_{2}(\mathbb{A})$.
- For cubic Gauss sums, Patterson (1977) computed the functional equation and the residue of the pole at $s=\frac{5}{6}$.

Metaplectic forms

- Weil (1953) observed that the (complex) θ-function which transforms as
$\theta\left(\frac{a z+b}{c z+d}\right)=\epsilon_{d}\left(\frac{c}{d}\right) \sqrt{c z+d} \theta(z), \quad \epsilon_{d}= \begin{cases}1 & d \equiv 1 \bmod 4 \\ i & d \equiv 3 \bmod 4\end{cases}$
can be thought as an automorphic form on $\widetilde{G L}_{2}$, the two-fold metaplectic cover of GL_{2}.
- Kubota $(1969,1971)$ generalized that to the n-fold cover of $\mathrm{GL}_{2}(\mathbb{A})$.
- For cubic Gauss sums, Patterson (1977) computed the functional equation and the residue of the pole at $s=\frac{5}{6}$.
- For quartic Gauss sums, Suzuki (1983) computed the functional equation and the residue of the pole at $s=\frac{3}{4}$ in certain cases.

Shifted quartic Gauss sums

Let

$$
\begin{aligned}
g_{4}(\nu, c) & =\sum_{a \bmod c}\left(\frac{a}{c}\right)_{4} \mathbf{e}\left(\frac{\nu a}{q}\right) \\
\tilde{\psi}_{\beta}^{(4)}(s, \nu) & :=\sum_{\substack{c \in \mathbb{Z}[i] \\
c \equiv \beta \bmod 4}} \frac{\tilde{g}_{4}(\nu, c)}{N(c)^{s}}
\end{aligned}
$$

which converges absolutely for $\Re(s)>1$.

Shifted quartic Gauss sums

Let

$$
\begin{aligned}
g_{4}(\nu, c) & =\sum_{a \bmod c}\left(\frac{a}{c}\right)_{4} \mathbf{e}\left(\frac{\nu a}{q}\right) \\
\tilde{\psi}_{\beta}^{(4)}(s, \nu) & :=\sum_{\substack{c \in \mathbb{Z}[i] \\
c \equiv \beta \bmod 4}} \frac{\tilde{g}_{4}(\nu, c)}{N(c)^{s}}
\end{aligned}
$$

which converges absolutely for $\Re(s)>1$.
Let

$$
\psi_{\beta}^{(4)}(\nu):=\operatorname{Res}_{s=3 / 4} \tilde{\psi}_{\beta}^{(4)}(s, \nu)=\operatorname{Res}_{s=5 / 4} \psi_{\beta}^{(4)}(s, \nu)
$$

Functional Equation

Theorem

The functions $\psi_{i 1}^{(4)}(s, \nu), 0 \neq \nu \in \mathbb{Z}[i]$, and $i=1, \ldots, 24$ can be meromorphically extended to \mathbb{C}, with at most two simple poles at $s=5 / 4$ and $s=3 / 4$. The functions are bounded in vertical strips and satisfy the functional equation

$$
\psi_{i 1}^{(4)}(s, \nu)=N(\nu)^{1-s} \sum_{i=1}^{24} A_{j i}\left(2^{-s}\right) \psi_{i 1}^{(4)}(2-s, \nu) .
$$

For $\varepsilon>0$, we have for $1+\varepsilon<\sigma<\frac{3}{2}+\varepsilon$ and $\left|s-\frac{5}{4}\right|>\frac{1}{8}$,

$$
\begin{aligned}
\psi_{i 1}^{(4)}(\nu, s) & \lll, o r d_{\lambda}(\nu) \\
\psi_{i 1}^{(4)}(\nu) & \ll N(\nu)^{\frac{1}{2}\left(\frac{3}{2}-\sigma\right)+\varepsilon}(|s|+1)^{\frac{3}{2}\left(\frac{3}{2}-\sigma\right)+\varepsilon}
\end{aligned}
$$

Can we do better than convexity?

By the work of Suzuki (1983), for m square-free and $(m, \nu)=1$,

$$
\begin{aligned}
\psi_{\beta}^{(4)}\left(m^{4} \nu\right) & =\psi_{\beta}^{(4)}(\nu) \\
\psi_{\beta}^{(4)}\left(m^{3} \nu\right)= & 0 \\
\psi_{\beta}^{(4)}\left(m^{2} \nu\right) & = \begin{cases}\frac{\overline{\widetilde{g}_{4}}(\nu, m)}{N(m)^{\frac{1}{4}}} \psi_{\beta}^{(4)}(\nu) & m \equiv 1 \bmod 4 \\
\frac{\widetilde{g}_{4}(\nu, m)}{N(m)^{\frac{1}{4}}} \psi_{\beta}^{(4)}(\nu) & m \equiv 1+\lambda^{3} \bmod 4\end{cases}
\end{aligned}
$$

Can we do better than convexity?

By the work of Suzuki (1983), for m square-free and $(m, \nu)=1$,

$$
\begin{aligned}
\psi_{\beta}^{(4)}\left(m^{4} \nu\right) & =\psi_{\beta}^{(4)}(\nu) \\
\psi_{\beta}^{(4)}\left(m^{3} \nu\right)= & 0 \\
\psi_{\beta}^{(4)}\left(m^{2} \nu\right) & = \begin{cases}\frac{\overline{\widetilde{g}_{4}}(\nu, m)}{N(m)^{\frac{1}{4}}} \psi_{\beta}^{(4)}(\nu) & m \equiv 1 \bmod 4 \\
\frac{\widetilde{g}_{4}(\nu, m)}{N(m)^{\frac{1}{4}}} \psi_{\beta}^{(4)}(\nu) & m \equiv 1+\lambda^{3} \bmod 4\end{cases}
\end{aligned}
$$

It is conjectured that for all $m \in \mathbb{Z}[i]$ square-free,

$$
\left|\psi_{\beta}^{(4)}(m)\right|=\frac{1}{N(m)^{\frac{1}{8}}}
$$

Back to quartic Gauss sums at integral argument

Let $m \in \mathbb{Z}[i]$ be square-free, then

$$
\begin{aligned}
& \sum_{\substack{c \in \mathbb{Z}[i] \\
c \equiv \beta \bmod 4}} \widetilde{g}_{4}\left(m^{2}, c\right) R\left(\frac{N(c)}{X}\right) \\
&= \frac{1}{2 \pi i} \int_{(\sigma)} \psi_{\beta}^{(4)}\left(s+\frac{1}{2}, m^{2}\right) X^{s} \widehat{R}(s) d s \\
&= \frac{c_{\beta, m}}{N\left(m^{2}\right)^{\frac{1}{8}}} X^{\frac{3}{4}}+O\left(X^{\frac{1}{2}+\varepsilon} N\left(m^{2}\right)^{\frac{1}{4}+\varepsilon}\right)
\end{aligned}
$$

From integers to primes: Vaughan's identity

Let

$$
\begin{array}{r}
H_{\beta}(X)=\sum_{\substack{c \in \mathbb{Z}[i] \\
c \equiv \beta \bmod 4}} \Lambda(c) \widetilde{g}(c) R\left(\frac{N(c)}{X}\right) \\
\Sigma_{j, \beta}(X, u)=\sum_{a, b, c} \Lambda(a) \mu(b) \widetilde{g}(a b c) R\left(\frac{N(a b c)}{X}\right)
\end{array}
$$

where $a, b, c \in \mathbb{Z}[i]$ such that $a b c \equiv \beta \bmod 4$, and some j-conditions on the size of a, b, c..
Then,

$$
H_{\beta}(X)+\Sigma_{2^{\prime}}(X, u)+\Sigma_{2^{\prime \prime}}(X, u)+\Sigma_{3}(X, u)=\Sigma_{1}(X, u) .
$$

Type 1 and Type 2 sums

$$
\Sigma_{j, \beta}(X, u)=\sum_{\substack{a, b, c \in \mathbb{Z}[i] \\ a, b, c=1 \bmod \lambda^{3} \\ a b c \equiv \beta \bmod 4}} \Lambda(a) \mu(b) \widetilde{g}(a b c) R\left(\frac{N(a b c)}{X}\right)
$$

where for $1 \leq u \leq X^{1 / 2}$,

$$
\begin{array}{lr}
N(b) \leq u & \text { for } j=1, \\
N(a b) \leq u & \text { for } j=2^{\prime}, \\
N(a), N(b) \leq u<N(a b) & \text { for } j=2^{\prime \prime} \\
N(b) \leq u<N(a), N(b c) & \text { for } j=3,
\end{array}
$$

Bounding Type 1 sums

For Type 1 sums, using Patterson's and Suzuki's work, and an extra averaging using the quadratic large sieve, we get

$$
\begin{aligned}
& \Sigma_{1, \beta}(X, u), \Sigma_{2^{\prime}, \beta}(X, u) \\
& \ll X^{\varepsilon} \sum_{N(\alpha) \leq u} \mu^{2}(\alpha) \sum_{\substack{c \in \mathbb{Z}[i] \\
c \equiv \beta \bmod 4 \\
c \equiv 0 \bmod \alpha}} \tilde{g}_{4}(c) R\left(\frac{N(c)}{X}\right) \\
& <_{\varepsilon} X^{\frac{3}{4}+\varepsilon}
\end{aligned}
$$

which is equivalent to Heath-Brown for cubic (2000): $X^{\frac{5}{6}}+\varepsilon$.

Bounding Type 1 sums

For Type 1 sums, using Patterson's and Suzuki's work, and an extra averaging using the quadratic large sieve, we get

$$
\begin{aligned}
& \Sigma_{1, \beta}(X, u), \quad \Sigma_{2^{\prime}, \beta}(X, u) \\
& \ll X^{\varepsilon} \sum_{N(\alpha) \leq u} \mu^{2}(\alpha) \sum_{\substack{c \in \mathbb{Z}[i] \\
c \equiv \beta \bmod 4 \\
c \equiv 0 \bmod \alpha}} \tilde{g}_{4}(c) R\left(\frac{N(c)}{X}\right) \\
& \ll \varepsilon X^{\frac{3}{4}+\varepsilon}
\end{aligned}
$$

which is equivalent to Heath-Brown for cubic (2000): $X^{\frac{5}{6}}+\varepsilon$.
By properties of quartic Gauss sums, for $(\alpha, c)=1$,

$$
\begin{aligned}
g_{4}(\nu, \alpha c) & =\left(\frac{c}{\alpha}\right)_{4}\left(\frac{\alpha}{c}\right)_{4} g_{4}(\nu, \alpha) g_{4}(\nu, c) \\
& =(-1)^{C(\alpha, c)} g_{4}(\nu, \alpha) g_{4}\left(\nu \alpha^{2}, c\right)
\end{aligned}
$$

Bounding Type 2 sums

For Type 2 sums, using the Quadratic Large Sieve over $\mathbb{Q}(i)$, we have

$$
\Sigma_{2^{\prime \prime}, \beta}(X, u), \Sigma_{3, \beta}(X, u) \ll X^{\epsilon}\left(X^{\frac{1}{2}} u+X u^{-\frac{1}{2}}\right) \ll X^{\frac{5}{6}+\varepsilon}
$$

taking $u=X^{\frac{1}{3}}$.

