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1 Overview of the Field
The idea of evolving a quantum state through vertices of a decision tree via a continuous-time quantum walk
was established two and a half decades ago [8]. A quantum walk is the quantum mechanical analogue of
a classical random walk. More specifically, a continuous-time quantum walk on a graph X is described by
a time-dependent transition matrix U(t) = exp(itH), where H is the Hamiltonian describing the quantum
system, typically taken to be the adjacency matrix, Laplacian matrix, or signless Laplacian associated to
the graph. While the work of [8] is focused on quantum algorithms, transport problems in quantum spin
networks were considered in [3]. In this setting, the vertices of the graph are spins and the edges of the graph
connect spins which interact. The ability to transfer a quantum state reliably from one location to another
(within, say, a quantum computer), as well as generating entangled states, are important tasks to achieve in
quantum spin systems. Both the situations described by [8] and [3] amount to the same thing—the study of
fidelity of quantum state transfer, where the probability of state transfer between vertices a and b at time t is
pa,b(t) = |eTa exp(itH)eb|2 = |(U(t))a,b|2, where ea is the vector with 1 in the ath component and zeros
elsewhere, and similarly for eb. The probability of state transfer is a number between 0 and 1 that measures
the closeness of two quantum states, which determines the accuracy of the quantum state transfer. Much
work has been done on the subject of quantum state transfer since these seminal works, developing perfect
state transfer [5, 6, 9, 13], pretty good state transfer [10, 11, 16, 7], fractional revival [1, 2], and variants.

2 Recent Developments and Open Problems
Until very recently, work done on the topic of quantum state transfer has considered a spin propagating
through vertices in the graph. However, [4] considers dynamics between certain linear combinations of two
states, specifically pair state transfer from ea−eb to eα−eβ , and plus state transfer from ea+eb to eα+eβ .
Work done in [14] takes this a step further, exploring the notion of an s-pair state of the form ea+seb, where
s ∈ C, developing the theory of perfect s-pair state transfer in continuous quantum walks.

From a physics point of view, the vector ea represents excitation of spin a, and so the state of an n-
spin system can be represented as |1⟩a|0⟩b|0⟩c · · · ∈ C2n . Similarly, eb corresponds to |0⟩a|1⟩b|0⟩c · · · ,
where we have, without loss of generality, reordered our vertices for convenience so that the vertices a and
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b appear first; indeed, vertices a and b need not be adjacent, and it is desirable to have them physically
far apart in the network, so that one can transfer the quantum state of interest a far distance. The state

1√
1+s2

(|1⟩a|0⟩b + s|0⟩a|1⟩b) is a pair of entangled qubits (assuming s ̸= 0) in the 1-excitation subspace Cn,
represented by the corresponding s-pair state 1√

1+s2
(ea + seb). In what follows, we drop the normalization

factor for ease of discussion, as it does not play a significant role.
Vertices a and b of a graph X are strongly cospectral (with respect to a matrix M associated to X) if

Ejea = ±Ejeb for each j, where the Ej’s are orthogonal projection matrices onto each distinct eigenspace,
and M is often taken to be the adjacency, Laplacian, or signless Laplacian of the graph (though other sym-
metric matrices may be used). Identifying strong cospectrality between vertices is an important tool in the
study of quantum state transfer [12]. Furthermore, work done in [14, Theorem 2.3] shows that strong cop-
sectrality of s-pair states is a necessary condition for perfect s-pair state transfer; their work also uncovered
infinite families of graphs exibiting s-pair state strong cospectrality, periodicity, and perfect state transfer.

Because the study of s-pair states is very new, there are many open problems in the area. It is of interest
to identify what results in the literature extend (or don’t extend) from vertices to edges. Given the importance
of strong cospectrality, one can explore analogous results on strongly cospectral s-pair states.

Work of [15] considers pair state transfer relative to the adjacency matrix of a graph, finding infinitely
many trees with perfect pair state transfer. Further examples of families of graph having strong copsectrality
of s-pair states (or not having strong copsectrality of s-pair states) would be a useful first step in identifying
which graphs have/do not have perfect s-pair state transfer. One can explore s-pair state transfer for various
Hamiltonians—the adjacency matrix, the Laplacian, the signless Laplacian, and so on.

3 Scientific Progress Made
Given that the numerics for small graphs show that perfect pair state transfer occurs more often than perfect
vertex state transfer [4], the study of pair state transfer, and more generally, s-pair state transfer merits further
investigation. The two-week Teamup mainly focused on finding examples of s-pair-state transfer, with the
goal of providing infinite families of graphs allowing for quantum state transfer between these more general
states. Specifically, it was noted that, although pair and plus states have been considered, quantum state
transfer between a plus state and a pair state has not been explored; consequently, the group primarily focused
on state transfer properties between s-pair states and −s-pair states. However, state transfer between states
of the type ea + seb and eα + reβ (for vertices a, b, α, β and scalars r, s) was also considered, and the
analogous definition of strong cospectrality — for each eigenprojection matrix Ej , ∃γj with |γj | = 1 such
that Ej(ea + seb) = γjEj(eα + reβ) — was investigated, leading to generalisations of results from the case
of real r, s to complex r, s. As it turns out, in both the real and the complex settings, strong cospectrality
(a necessary condition for perfect quantum state transfer) only holds provided |r| = |s|. However, some
major differences arise in the complex setting, most notably, monogamy of perfect state transfer is lost. We
also provide a number of infinite families of graphs exhibiting perfect state transfer between an s-pair-state
transfer and a −s-pair-state in each of the s ∈ {R,C} settings.

4 Outcome of the Meeting
The work done during the Teamup further developed quantum pair state transfer and underscores the utility
of this type of transfer. The group will continue to meet regularly by way of video conferencing, with the
goal of writing a manuscript for peer review.
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