Open Problems Session \#1, Wednesday

Scribe: Matt Baker

March 14, 2023
(Alex Fink) One might naturally ask, if $M \rightarrow N$ is a weak map of connected matroids of the same rank on the same ground set (i.e., every basis of N is a basis of M), if there exist a regular matroid polytope subdivision of M of which N is a face. The answer, as shown in a paper of Brandt-Speyer, is in general no.

Question: Can we salvage this by merely asking for a chain of subdivisions

$$
M=M_{0} \rightarrow M_{1} \rightarrow \cdots \rightarrow M_{k}=N ?
$$

Rudi Pendavingh said that the Betsy Ross matroid should be a counterexample.

Question (June Huh): Can one prove that certain matroid polynomials (e.g. the Kazhdan-Lusztig polynomial and the Z-polynomial) are (coefficientwise) monotone with respect to weak maps?

Question (Alex Fink): Can we model weak maps using matroids over bands, in the sense of Baker-Bowler and Baker-Lorscheid?

Alex proposed a specific band which should do the job. What can one do with this?
(Oliver Lorscheid) If $f: M \rightarrow N$ is a strong map of matroids on the same ground set (i.e., N is a quotient of M), there is a factorization theorem which says that f factors as a restriction followed by a contraction. One might wonder if this also holds for B-matroids, where B is an $i d y l l$. However, the answer is no: for example, when B is the sign hyperfield, we are talking about oriented matroids and Richter-Gebert has given a counterexample to the factorization theorem.

Question: For which B is it true?
(Matt Larson) Suppose L is a linear subspace of K^{n}, where K is a field, giving rise to a loopless matroid M of rank r. Let P be a full-dimensional generalized permutohedron in \mathbb{R}^{n}, and define $R(P, L)$ to be the image of

$$
\oplus_{k \geq 0} H^{0}\left(X_{A_{n-1}}, \mathcal{O}(k P)\right)
$$

in $\mathbb{P} L \cap T$.

Conjecture 1:

$$
\operatorname{dim} R^{k}(P, L)=\chi\left(W_{L}, \mathcal{O}(k P)\right)=\chi(M, \mathcal{O}(k P))
$$

This would follow if $H^{i}\left(W_{L}, \mathcal{O}(k P)\right)=0$ for $i>0$ and we have surjectivity on H^{0}.

Conjecture 2: $R^{\cdot}(P, L)$ is a Cohen-Macaulay ring.

Conjecture 3:

$$
\sum_{k \geq 0} \chi(M, \mathcal{O}(k P)) t^{k}=\frac{Q(t)}{(1-t)^{r}}
$$

where the coefficients of Q are nonnegative.

Remarks:

1. Conjecture $1+$ Conjecture 2 implies Conjecture 3 if M is realizable.
2. These are true if $L=K^{n}, P$ is the standard simplex, or P is the negative of the standard simplex.
3. If true, these conjectures would show that $\left[t^{r}\right] g_{M}(t) \geq 0$.
(Federico Ardila posed a problem but I had to step out to take a phone call.)
(Chris Eur):
Given a matroid quotient $M \rightarrow N$, we have a canonical Higgs factorization

$$
M \rightarrow M_{1} \rightarrow M_{2} \rightarrow \cdots \rightarrow N
$$

Each successive quotient in the factorization comes from a matroid \hat{M}_{i}, where M_{i-1} is a single-element deletion of \hat{M}_{i} and M_{i} is a single-element contraction of \hat{M}_{i}. Consider the beta-invariants of the matroids \hat{M}_{i}.

Question: Is the sequence $\beta\left(\hat{M}_{1}\right), \ldots, \beta\left(\hat{M}_{r-1}\right)$ log-concave?

