Baby PIH;
Parameterized
Inapproximability of Min CSP

Venkatesan Guruswami Xuandi Ren SaiSandeep

UC Berkeley UC Berkeley UC Berkeley

Outline

= Background
= Parameterized Complexity
= Constraint Satisfaction Problem (CSP)
= Parameterized Inapproximability Hypothesis (PIH)

= Our Result
- Baby PIH

= Proof Overview

Outline

= Background
= Parameterized Complexity
= Constraint Satisfaction Problem (CSP)
= Parameterized Inapproximability Hypothesis (PIH)

= Our Result
- Baby PIH

= Proof Overview

Parameterized Complexity

» Each input instance x is associated with a parameter k € N
 Complexity is measured as a function of both n = |x| and k.

- FPT (Fixed-Parameter Tractable):
« problems that admit f (k) - n°") time algorithms, f can be any computable function

Parameterized Complexity

» Each input instance x is associated with a parameter k € N
 Complexity is measured as a function of both n = |x| and k.

- FPT (Fixed-Parameter Tractable):
« problems that admit f (k) - n°") time algorithms, f can be any computable function

k-Vertex Cover (Multi-colored) k-Clique
e Input: * Input:
« G=(V,E) s G=WV =V, U---UV,E)
e Output: e Output:
* vy, ..,V €V covering e Jv, €V, ...,V EV

all the edges? which form a clique?

Parameterized Complexity

» Each input instance x is associated with a parameter k € N
 Complexity is measured as a function of both n = |x| and k.

- FPT (Fixed-Parameter Tractable):
« problems that admit f (k) - n°") time algorithms, f can be any computable function

k-Vertex Cover (Multi-colored) k-Clique
e Input: * Input:
« G=(V,E) s G=WV =V, U---UV,E)
* Output: * Output:
* vy, ..,V €V covering e Jv, €V, ...,V EV
all the edges? which form a clique?

IN

Constraint Satisfaction Problem

2-CSP
o Input: Il = (X, X,)
* X:asetof variables
« X:the domain of each variable
* O@: aset of 2-ary constraints
* Output:
* 3Jo:X — X satisfying all constraints?

CSP Value
max. fraction of
constraints satisfiable
by someo: X —» X

Constraint Satisfaction Problem

2-CSP
o Input: Il = (X, X,)
* X:asetof variables
« X:the domain of each variable
* O@: aset of 2-ary constraints
* Output:
* 3Jo:X — X satisfying all constraints?

CSP Value
max. fraction of
constraints satisfiable
by someo: X —» X

 Letn = |1,
» 2-CSP is NP-Complete (e.g. from 3-Coloring)
« no n’® time algorithm assuming NP#P

Constraint Satisfaction Problem

2-CSP
o Input: Il = (X, X,)
* X:asetof variables
« X:the domain of each variable
* O@: aset of 2-ary constraints
* Output:
* 3Jo:X — X satisfying all constraints?

CSP Value
max. fraction of
constraints satisfiable
by someo: X —» X

 Letn = |1,
» 2-CSP is NP-Complete (e.g. from 3-Coloring)
« no n’® time algorithm assuming NP#P
 PCP Theorem:
 no n’M time algorithm for (1 vs 0.9) gap 2-CSP assuming NP#P

Parameterized 2-CSP

2-CSP
e Input: Il = (X, X,)
* X:asetof variables
« X:the domain of each variable
 O: aset of 2-ary constraints
* Output:
* 3Jo:X — X satisfying all constraints?

CSP Value
max. fraction of
constraints satisfiable
by someo: X —» X

o Letk = |X|,n = |Z|,
» Parameterized 2-CSP is W[1]-Complete (e.g. from Multi-colored k-Clique)
* no f(k) - n°D time algorithm assuming W[1]#FPT

Parameterized 2-CSP

2-CSP
e Input: Il = (X, X,)
* X:asetof variables
« X:the domain of each variable
 O: aset of 2-ary constraints
* Output:
* 3Jo:X — X satisfying all constraints?

CSP Value
max. fraction of
constraints satisfiable
by someo: X —» X

« Letk = |X|,n=|Z|,
» Parameterized 2-CSP is W[1]-Complete (e.g. from Multi-colored k-Clique)
* no f(k) - n°D time algorithm assuming W[1]#FPT
« PIH (Parameterized Inapproximability Hypothesis) [[LRSZ20]:
« no f(k) - n°® time algorithm for (1 vs 0.9) gap version assuming W[1]#FPT
* Parameterized analog of the PCP theorem!

Parameterized Inapproximability Hypothesis

Error-Correcting Codes [Lin21, KK22, LRSW23b]|

v

(Gap) k-Clique

(Gap) k-ExactCover

Sidon Sets [CFLL23]

-,
-
x

Distributed PCP Framework [KL.M19]

WI[1]£FPT

.-

o“i/
7

Threshold Graphs [Lin19, KL21, LRSW23a]

A

4

(Gap) k-SetCover

and soon...

e

Parameterized Inapproximability Hypothesis

W[1]£FPT

} PIH

v

(Gap) Parameterized 2CSP

Canonical Reductions

(Gap) k-Clique (Gap) k-SetCover

(Gap) k-ExactCover and soon...

e

Parameterized Inapproximability Hypothesis

[DM18, CFM17] E(Unknown) PIH

Lo * (Gap) Parameterized 2CSP

Outline

= Background
= Parameterized Complexity
= Constraint Satisfaction Problem (CSP)
= Parameterized Inapproximability Hypothesis (PIH)

= Our Result
- Baby PIH

= Proof Overview

List Satisfiability of CSP

2-CSP
o Input:ll = (X,X,) List Value
¢ Output: max. list size of a list-satisfying
« 3 multi-assignment g: X — 2> multi-assignment ¢: X — 2=

list-satisfying all constraints?

« A constraint on (x, y) is list-satisfied iff Ju € o(x), v € a(y), s.t. (u, V) satisfies this constraint.

List Satisfiability of CSP

2-CSP
o Input:ll = (X,X,) List Value
¢ Output: max. list size of a list-satisfying
« 3 multi-assignment g: X — 2> multi-assignment ¢: X — 2=

list-satisfying all constraints?

« A constraint on (x, y) is list-satisfied iff Ju € o(x), v € a(y), s.t. (u, V) satisfies this constraint.

5 = {0,1,2,3) @

o(x;) = a(x3) o Noo(xy) +o(x3) =2

List Satisfiability of CSP

2-CSP
o Input:ll = (X,X,) List Value
¢ Output: max. list size of a list-satisfying
« 3 multi-assignment g: X — 2> multi-assignment ¢: X — 2=

list-satisfying all constraints?

« A constraint on (x, y) is list-satisfied iff Ju € o(x), v € a(y), s.t. (u, V) satisfies this constraint.

T = {0,1,2,3} @ 1]

o(x;) = a(x3) o Noo(xy) +o(x3) =2

\
\
\
\
\

O e (xy) [1.2]
o(x1) +o(x3) =3

List Satisfiability of CSP

2-CSP
o Input:ll = (X,X,) List Value
¢ Output: max. list size of a list-satisfying
« 3 multi-assignment g: X — 2> multi-assignment ¢: X — 2=

list-satisfying all constraints?

« A constraint on (x, y) is list-satisfied iff Ju € o(x), v € a(y), s.t. (u, V) satisfies this constraint.

T = {0,1,2,3} @ [1]

/
o(x;) = a(xy) 7 N a(xy) + 0(xs) =2
/ A

/
/

1 Gy @0

\
\
\
\
\

List Satisfiability of CSP

2-CSP
o Input:ll = (X,X,) List Value
¢ Output: max. list size of a list-satisfying
« 3 multi-assignment g: X — 2> multi-assignment ¢: X — 2=

list-satisfying all constraints?
« A constraint on (x, y) is list-satisfied iff Ju € o(x), v € a(y), s.t. (u, V) satisfies this constraint.

T = {0,1,2,3} @ [1]

, \
o(x;) =0a(xz) \\U(xz) +o(x3) =2
! \

List Satisfiability of CSP

2-CSP
o Input:ll = (X,X,) List Value
¢ Output: max. list size of a list-satisfying
« 3 multi-assignment g: X — 2> multi-assignment ¢: X — 2=

list-satisfying all constraints?

« A constraint on (x, y) is list-satisfied iff Ju € o(x), v € a(y), s.t. (u, V) satisfies this constraint.

T = {0,1,2,3} @ 1]

o(x;) = a(x3) o Noo(xy) +o(x3) =2

\
\
\
\
\

1 (=== === - - (xy) [1.2]
o(x1) +a(x3)=3

List Satisfiability of CSP

2-CSP
o Input:ll = (X,X,) List Value
¢ Output: max. list size of a list-satisfying
« 3 multi-assignment g: X — 2> multi-assignment ¢: X — 2=

list-satisfying all constraints?

» We say a 2-CSP is r-list satisfiable iff 30 with meagla(x)l < r list-satisfying all constraints.
X

List Satisfiability of CSP

2-CSP
o Input:ll = (X,X,) List Value
¢ Output: max. list size of a list-satisfying
« 3 multi-assignment g: X — 2> multi-assignment ¢: X — 2=

list-satisfying all constraints?

» We say a 2-CSP is r-list satisfiable iff 30 with meagla(x)l < r list-satisfying all constraints.
X

» CSP Value=1 & 1-list satisfiable = r-list satisfiable forr > 2
* r-list satisfiable = CSP Value > 1/r?

Baby PCP

2-CSP
o Input:ll = (X,X,) List Value
¢ Output: max. list size of a list-satisfying
« 3 multi-assignment g: X — 2> multi-assignment ¢: X — 2=

list-satisfying all constraints?

» We say a 2-CSP is r-list satisfiable iff 30 with meagla(x)l < r list-satisfying all constraints.
X

» CSP Value=1 & 1-list satisfiable = r-list satisfiable forr > 2
* r-list satisfiable = CSP Value > 1/r?

« Baby PCP |Barto-Kozik’22]

 For any r > 1, It’s NP-hard to distinguish between [1-list satisfiable] and [not even r-list satisfiable].

e

Baby PCP

2-CSP
o Input:ll = (X,X,) List Value
¢ Output: max. list size of a list-satisfying
« 3 multi-assignment g: X — 2> multi-assignment ¢: X — 2=

list-satisfying all constraints?

» We say a 2-CSP is r-list satisfiable iff 30 with meagla(x)l < r list-satisfying all constraints.
X

» CSP Value=1 & 1-list satisfiable = r-list satisfiable forr > 2
 r-list satisfiable = CSP Value > 1/r?

« Baby PCP |Barto-Kozik’22]

 For any r > 1, It’s NP-hard to distinguish between [1-list satisfiable] and [not even r-list satisfiable].
« & PCP) I (when e < 1/r?)

* For any ¢ > 0, It’s NP-hard to distinguish between [CSP Value =1] and [CSP Value <¢].

e

Baby PCP

« Baby PCP |Barto-Kozik'22]
* Assuming NP+P, for any r > 1, distinguishing between
[1-list satisfiable] and [not even r-list satisfiable] cannot be done in |I1|°M time.
* (A combinatorial proof)
* (Enough to prove the NP-hardness of some PCSPs (e.g., (2 + €)-SAT))

Baby PIH

« Baby PCP |Barto-Kozik'22]
* Assuming NP+P, for any r > 1, distinguishing between
[1-list satisfiable] and [not even r-list satisfiable] cannot be done in |I1|°M time.
* (A combinatorial proof)
* (Enough to prove the NP-hardness of some PCSPs (e.g., (2 + €)-SAT))

» Baby PIH [This work]
« Assuming W[1]#FPT, ... cannot be done in f(|X]) - |£|°(time.
* (Anitself interesting inapproximability result for list-satisfiability of CSP)
* (A step towards PIH)
* (Enough to get some applications of PIH?)

Baby PIH

« Baby PCP |Barto-Kozik'22]
* Assuming NP+P, for any r > 1, distinguishing between
[1-list satisfiable] and [not even r-list satisfiable] cannot be done in |I1|°M time.
* (A combinatorial proof)
* (Enough to prove the NP-hardness of some PCSPs (e.g., (2 + €)-SAT))

» Baby PIH [This work]
« Assuming W[1]#FPT, ... cannot be done in f(|X]) - |Z|°™ time.
* (Anitself interesting inapproximability result for list-satisfiability of CSP)
* (A step towards PIH)
* (Enough to get some applications of PIH?)
* not sure..., but something stronger is enough!
* PIH = Average Baby PIH = Baby PIH

Outline

= Background
= Parameterized Complexity
= Constraint Satisfaction Problem (CSP)
= Parameterized Inapproximability Hypothesis (PIH)

= Our Result
- Baby PIH

= Proof Overview

Proof Overview

« Follows from and extends |Barto-Kozik’22|’s proof of Baby PCP Theorem
 Direct Product Construction

5_CSP t-wise Direct)P(’roduct 2-CSP
= (X2 o) Mot = <(t) Xt CI>’>

partial satisfying assignments
for the set of variables

v

Proof Overview

« Follows from and extends |Barto-Kozik’22|’s proof of Baby PCP Theorem
 Direct Product Construction

9_CSP t-wise Direct Product 2-CSP

X
= (X2 o) Mot = <(t) Xt

v

[consistency checks

Proof Overview

Follows from and extends |Barto-Kozik’22|’s proof of Baby PCP Theorem
Direct Product Construction

9_CSP t-wise Direct Product 2-CSP

X
= (X2 o) Mot = <(t) Xt

v

consistency checks]

partial satisfying assignments
for the set of variables

(Want to show):
For any r > 1, there exists t depending on r, such that for every II,
 (Completeness) IfII is satisfiable, then so is [1©¢ .
* (Soundness) If I1 is not satisfiable, then [1? is not r-list satisfiable.

Proof Overview

Follows from and extends |Barto-Kozik’22|’s proof of Baby PCP Theorem
Direct Product Construction

9_CSP t-wise Direct Product 2-CSP

X
= (X2 o) Mot = <(t) Xt

v

consistency checks]

partial satisfying assignments
for the set of variables

(Want to show):
For any r > 1, there exists t depending on r, such that for every II,
 (Completeness) IfII is satisfiable, then so is [1©¢ .
* (Soundness) If I1 is not satisfiable, then [1? is not r-list satisfiable.

Reduction time: n%(Y) where n = |II|
* a unified proof for both Baby PCP and Baby PIH!

®

Proof Overview

(1,3,1,2) 7
3321) - < [(%1, X3, X4, X10) }[(%1, X3, X5, X7) J"’ n
(2,2,3,1) _ '

/

[andsoon... }[(X1, X2, X4, X9) J.-><

A 3-list satisfying assignment for I1©*

(1,1,1,2)
(2,1,2,3)
(3,1,2,2)
(1,1,3,2)
(2,2,3,3)
(1,1,3,1)

Proof Overview

(1,3,1,2) 7
3321) - < [(%1, X3, X4, X10) }“[(%1, X3, X5, X7) J"’ n
(2,2,3,1) _ '

/

[andsoon... }[(X1, X2, X4, X9) J.-><

A 3-list satisfying assignment for I1©*

(1,1,1,2)
(2,1,2,3)
(3,1,2,2)
(1,1,3,2)
(2,2,3,3)
(1,1,3,1)

Proof Overview

(1,3,1,2) 7 —
(3321) - « [(x1, X3, X4, X10) }[(x1, X2, X5, X7) J =
(2,2,3,1) _ '

/

[andsoon... }[(X1, X2, X4, X9) J.-><

A 3-list satisfying assignment for I1©*

(1,1,1,2)
(2,1,2,3)
(3,1,2,2)
(1,1,3,2)
(2,2,3,3)
(1,1,3,1)

Proof Overview

(1,3,1,2) 7
(3321) - « [(X1, X3, X4, X10) }[(x1, X2, X5, X7) J"’ n
- N/ .
(2,2,3,1) _ i \\/ :
: N :
1 ,/ \ 1
1 , A Y 1

[andsoon... }[(X1, X2, X4, Xg) J.-><

A 3-list satisfying assignment for I1©*

(1,1,1,2)
(2,1,2,3)
(3,1,2,2)
(1,1,3,2)
(2,2,3,3)
(1,1,3,1)

Proof Overview

9_CSP t-wise Direct)lzroduct 2-CSP
M= (XX ®) e = <(t) 2 q>'>

v

» For some sufficiently large t = t(r),
« given an r-list satisfying multi-assignment ¢ of [1®¢,

« want to construct an (r — 1)-list satisfying multi-assignment ¢’ of MOt for some t’ < t.

Proof Overview

5_CSP t-wise Direct)lzroduct 2-CSP
M= (XX ®) e = <(t) 2 q>'>

v

» For some sufficiently large t = t(r),
« given an r-list satisfying multi-assignment ¢ of [1®¢,

« want to construct an (r — 1)-list satisfying multi-assignment ¢’ of MOt for some t’ < t.

« If we end up with the 1-list satisfiability of [1°(*2), then we are done!

Proof Overview

5_CSP t-wise Direct)lzroduct 2-CSP
M= (XX ®) e = <(t) 2 q>'>

v

» For some sufficiently large t = t(r),
« given an r-list satisfying multi-assignment o of [1°¢,

« want to construct an (r — 1)-list satisfying multi-assignment ¢’ of MOt for some t’ < t.
» foreachsetS e (}),chooseasetT e (7)withScT
* the list ¢'(S) is inherited from the list o (T) (at the hope of decreasing the list size by 1)

+ If we end up with the 1-list satisfiability of 192, then we are done!

e

Proof Overview

(1,3,1,2) 7
3321) - < [(%1, X3, X4, X10) }[(%1, X3, X5, X7) J"’ n
(2,2,3,1) _ '

/

[andsoon... }[(X1, X2, X4, X9) J.-><

A 3-list satisfying assignment for I1©*

(1,1,1,2)
(2,1,2,3)
(3,1,2,2)
(1,1,3,2)
(2,2,3,3)
(1,1,3,1)

Proof Overview

(1,3,1,2) 7
7O - < { (x1, X3, X4, X10) }[(X1, X2, X5, X7) J
(22,3,1) _ i i
inherit { andsoon... }""[(X1, X2, X4, X9) J

A 3-list satisfying assignment for I1©*

(1,3,1)
(2,2,3) < [(xl,xg,x4) }C\:""}{ (x1, X2, X5) J

Proof Overview

- (1,1,1,2)
{ (X1, X3, X4, X10) }[(X1, X2, X5, X7) J'—)-‘ A5
i i | (3122)
{ and soon... }[(X1,%2, X4,%X9) J inherit
A 3-list satisfying assignment for I1©*
(1,1,1)
[(X1, X3, X4) } """ / ’[(X1, X2, X5) J = (3,1,2) ~

Proof Overview

{(xl,x3,x4,x10) }[(X1, X2, X5, X7) J

, - (1,1,3,2)
{ andsoon... }[(X1, X5, X4, Xg) JH— (2,2,3,3)

—)=

A 3-list satisfying assignment for I1©*

[(X1, X3, X4) }{ (%1, X2, Xs5) J inherit

S/ A (171;3)
[and soon ... } ------ { (X1, X5, X4) J - (2.2,3) &

Proof Overview

(1,3,1)
(2'2»3) - [(xl,x3,x4) }\'\""'Z,’[(X1;X2,x5) J -

[andsoon... }{ (X1,%5, X4) J =

A 2-list satisfying assignment for [1©3?

(1,1,1)
(3,1,2)

(1,1,3)
(2,2,3)

®

Proof Overview

= How can we discard one assignment safely?
= the one that is never used to meet any consistency constraints!

Proof Overview

= How can we discard one assignment safely?
= the one that is never used to meet any consistency constraints!

= Suppose we have the following bipartite direct product instance:

(1,2,1) -
(3,3,2) |
(1,2,1)
(2,3,3)
(1,1,1)
(3,3,2) |
(1,3,1) -

21,1) |

Ve

\\

Ve

s \ N v , <

(X1, X2, X4) }\:' . '\;,;‘g\/‘ bt

h N7 SNy N\ ,
~
7N 7’(\\ 7 N
”
f P W \\/\ \
O v SO
v N LN \\\5
iy At v Sy
(xl, x3) x4_) \\\ , ,,\\ N ///
LY NS
b / ’\ /\/ \
/R4 SPLARY
‘, PR AR
(v, . S \\\

-

/, ’ N
-,
7

N
Ve

Ve

~N

(xlr xz; X3)

Ve

\\

(xlr xz; X4)

.

(xll x3; X4)

Ve

(x27x3; x4) } ---------- §\

.

(xz, x3; X4)

J

- (1,2,1)
' (2,3,2)
- (1,2,1)

L (2,3,3)
- (2,1,3)
| (1,1,1)
- (2,1,1)
(2,3,2)

®

Proof Overview

= How can we discard one assignment safely?
= the one that is never used to meet any consistency constraints!

= Suppose we have the following bipartite direct product instance:

(1,2,1) 7
(3,3,2) _
(1,2,1)

(2,3,3)
(1,1,1)

(3,3,2) _
(1,3,1) T
(2,1,1) _

Ve

\\

Ve

-, \ N2y ~

(X1, X2, X4) }\:' . '\;,;‘g\/‘ bt
£

~ \ VRN
\ <
|\ \ 7 \:I,’\)/
2N STANSLN
4 7 Ry (2N
/- > SN
73 PATIRAN \\\5
el s vk s
(X1, X3, X4) FI7770TN00
Q A 2z ¥
/R4S PRGN
7 7 \</ NN
/ FERES AT
/ - ~ \
' /, -, ~ \
/.7 N
U \s
_____________ A
(x5, X3, X4)
.

Ve

Vs

~N

(x4, x2,%x3)

Ve

(x1, X2, %4)

N\

.

(x1,X3,X4)

Ve

.

(x2,x3,%4)

J

" (1,2,1)
| (2,3,2)
" (1,2,1)

| (2,3,3)
" (2,1,3)

L (L,1,1)

" (2,1,1)

| (2,3,2)

X, hever
equals to 3

®

Proof Overview

= How can we discard one assignment safely?
= the one that is never used to meet any consistency constraints!

= Suppose we have the following bipartite direct product instance:

(1,2,1) 7
can safely (3.3,2) _'
remove the

: (1,2,1) T
assignment i
with x; = 3 (2,3,3) |

N (1,1,1) T
(1,3,1) T
(2,1,1) |

Ve

\\

Ve

-, \ N2y ~

(X1, X2, X4) }\:' . '\;,;‘g\/‘ bt
£

~ \ VRN
\ <
|\ \ 7 \:I,’\)/
2N STANSLN
4 7 Ry (2N
/- > SN
73 PATIRAN \\\5
el s vk s
(X1, X3, X4) FI7770TN00
Q A 2z ¥
/R4S PRGN
7 7 \</ NN
/ FERES AT
/ - ~ \
' /, -, ~ \
/.7 N
U \s
_____________ A
(x5, X3, X4)
.

Ve

Vs

~N

(x4, x2,%x3)

Ve

(x1, X2, %4)

N\

.

(x1,X3,X4)

Ve

.

(x2,x3,%4)

J

" (1,2,1)
| (2,3,2)
" (1,2,1)

| (2,3,3)
" (2,1,3)

L (L,1,1)

" (2,1,1)

| (2,3,2)

X, hever
equals to 3

®

Proof Overview

= How can we discard one assignment safely?
= the one that is never used to meet any consistency constraints!

= Suppose we have the following bipartite direct product instance:

(1,2,1) 7
for each S, inherit 3,32) .
from such a T that | (1,2,1) 7

3 € 0(T)y, (2,3,3) _
(1,1,1) -
(332)

(1,3,1) T

(2,1,1) _

Ve

\\

(x1; X2, X3) }\\

Ve

\\

(X1, X2, X4) }

Vs

-

(x1, X3, X4) }

Vs

-

(X2, X3, X4) }

Ve

~N

J

~N

J

~N

J

.

o -7 (Xl,XZ,X3)
\\\ \\\ ////,/ _
\ ST 0
\\\ //"\\/ 4
g ~N (
SON N N
s \ \'/e Vi \)

Sao w7 (Xl,XZ,X4)
N ¢ LV AEVAd ,/
Sl 0N, N
3 :\\)\
1NN
-7 > CAREREN
73 , \\‘/\ \\5
R e
Sso0o N //’ (xl’x37x4)
Sa s NS
AR 28 NN N\
7 S<_- \
’, //'<\ AR
/// g \\\\\\\ 4 N
l/,/,/ \\\s
(X2, X3, X4)

J

- (1,2,1)
1 @232
- (1,2,1)
1 233)
- (2,1,3)
"1)
- (2,1,1)
1 @232

for each S, inherit
from such a T that
30 (T)|x1

Proof Overview

= How can we discard one assignment safely?
= the one that is never used to meet any consistency constraints!

= Suppose we have the following bipartite direct product instance:

for each S, inherit
from such a T that
3 € O'(T)lxl

by discarding this
assignment, list size
is decreased by 1

(1,2,1) 7
(1,2,1) 7
(2,33) |
(1,1,1) 7
(1,3,1)
2,1,1) |

Ve

\\

(x1; X2, X3) }\\

Ve

\\

(X1, X2, X4) }

Vs

-

(x1, X3, X4) }

Vs

-

(X2, X3, X4) }

z

U ~

N
Y -7,
\

. ’

-, \ N2y ~
- oM ~
:____.,.,_, -
\ /

S x Lc

\ , _

,/ ‘. \\‘
~ 7 7N\ X s

4 N
Y - S N

\\ 4

Ve

\\

(x1, x2,Xx3)

~N

J

Ve

(x1, X2, %4)

~N

J

.

(x1,X3,X4)

~N

J

Ve

.

(x2,x3,%4)

~N

J

- (1,2,1)
1 @232
- (1,2,1)
1 233)
- (2,1,3)
"1)
- (2,1,1)
1 @232

for each S, inherit
from such a T that
30 (T)|x1

Proof Overview

= Bipartite (7, 1)-case

f

= Bipartite (7, q)-case

1

= Non-bipartite r-case

Proof Overview

= Bipartite (7, 1)-case

f

= Bipartite (7, q)-case

1

= Non-bipartite r-case

Takeaway

= Parameterized Inapproximability Hypothesis — parameterized analog of PCP

= Baby PIH — inapproximability of the list-satisfiability of (parameterized) 2CSP
= W[1]-hard to distinguish between [1-list satisfiable] and [not even r-list satisfiable]

» Proof Idea: induction on the list size

Takeaway

= Parameterized Inapproximability Hypothesis — parameterized analog of PCP

= Baby PIH — inapproximability of the list-satisfiability of (parameterized) 2CSP
= W[1]-hard to distinguish between [1-list satisfiable] and [not even r-list satisfiable]
= Proof Idea: induction on the list size

= Average Baby PIH?
= = constant inapproximability of k-ExactCover

Takeaway

= Parameterized Inapproximability Hypothesis — parameterized analog of PCP

= Baby PIH — inapproximability of the list-satisfiability of (parameterized) 2CSP
= W[1]-hard to distinguish between [1-list satisfiable] and [not even r-list satisfiable]

» Proof Idea: induction on the list size

= Average Baby PIH?
= = constant inapproximability of k-ExactCover

= Thanks!

