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Parameterized 2-CSP

2-CSP
e Input: Il = (X, X, )
* X:asetof variables
« X:the domain of each variable
 O: aset of 2-ary constraints
* Output:
* 3Jo:X — X satisfying all constraints?

CSP Value
max. fraction of
constraints satisfiable
by someo: X —» X

« Letk = |X|,n=|Z|,
» Parameterized 2-CSP is W[1]-Complete (e.g. from Multi-colored k-Clique)
* no f(k) - n°D time algorithm assuming W[1]#FPT
« PIH (Parameterized Inapproximability Hypothesis) [[LRSZ20]:
« no f(k) - n°® time algorithm for (1 vs 0.9) gap version assuming W[1]#FPT
* Parameterized analog of the PCP theorem!
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» Baby PIH [This work]
« Assuming W[1]#FPT, ... cannot be done in f(|X]) - |Z|°™ time.
* (Anitself interesting inapproximability result for list-satisfiability of CSP)
* (A step towards PIH)
* (Enough to get some applications of PIH?)
* not sure..., but something stronger is enough!
* PIH = Average Baby PIH = Baby PIH
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Follows from and extends |Barto-Kozik’22|’s proof of Baby PCP Theorem
Direct Product Construction

9_CSP t-wise Direct Product 2-CSP

X
= (X2 o) Mot = <(t) Xt

v

consistency checks ]

partial satisfying assignments
for the set of variables

(Want to show):
For any r > 1, there exists t depending on r, such that for every II,
 (Completeness) IfII is satisfiable, then so is [1©¢ .
* (Soundness) If I1 is not satisfiable, then [1? is not r-list satisfiable.

Reduction time: n%(Y) where n = |II|
* a unified proof for both Baby PCP and Baby PIH!
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5_CSP t-wise Direct )lzroduct 2-CSP
M= (XX ®) e = <(t) 2 q>'>

v

» For some sufficiently large t = t(r),
« given an r-list satisfying multi-assignment o of [1°¢,

« want to construct an (r — 1)-list satisfying multi-assignment ¢’ of MOt for some t’ < t.
» foreachsetS e (}),chooseasetT e (7)withScT
* the list ¢'(S) is inherited from the list o (T) (at the hope of decreasing the list size by 1)

+ If we end up with the 1-list satisfiability of 192, then we are done!
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= How can we discard one assignment safely?
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Proof Overview

= How can we discard one assignment safely?
= the one that is never used to meet any consistency constraints!

= Suppose we have the following bipartite direct product instance:

for each S, inherit
from such a T that
3 € O'(T)lxl

by discarding this
assignment, list size
is decreased by 1
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Proof Overview

= Bipartite (7, 1)-case
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Takeaway

= Parameterized Inapproximability Hypothesis — parameterized analog of PCP

= Baby PIH — inapproximability of the list-satisfiability of (parameterized) 2CSP
= W[1]-hard to distinguish between [1-list satisfiable] and [not even r-list satisfiable]

» Proof Idea: induction on the list size
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Takeaway

= Parameterized Inapproximability Hypothesis — parameterized analog of PCP

= Baby PIH — inapproximability of the list-satisfiability of (parameterized) 2CSP
= W[1]-hard to distinguish between [1-list satisfiable] and [not even r-list satisfiable]

» Proof Idea: induction on the list size

= Average Baby PIH?
= = constant inapproximability of k-ExactCover

= Thanks!




