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Submodular Set Functions

g :2¥ — R is submodular if:

VABCV, g(A)+g(B)=>g(AUB)+g(ANB)

VACBC V,vxe V/B, g(AU{x})—g(A) > g(BU{x})—g(B)



Submodular Facility Location

Given:

» n clients C and m facilities F,

» d:(CUF)Xx(CUF)—=Rxg

» a monotone submodular opening cost g(.)
Goal:

Minimize Z d(c,(c)) + Z gl
ceC feF

Where ¢ : C — F is assignment of each client to some facility



Known Results

SFL is APX-hard [Guha, Khuller,1999]

Svitkina and Tardos show [2010] that:

» There is O(log n) approximation for general SFL with multiple
submodular function. The result is tight, becuase of reduction
from Set Cover Problem.

» (4.237 + €)approximation for special case of SFL where
sudmodular function g(.) is specified by a rooted cost tree T
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» There is a polynomial-time O(log log n)-approximation
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Generalizations and Variants
» There is a polynomial-time O(log log n)-approximation
algorithm for MULTSF L.
» There is a polynomial-time O(log log n)-approximation
algorithm for ADDSFL.

n

» There is a polynomial-time O(log log p— )-approximation
algorithm for the UNIVERSAL STOCHASTIC FACILITY
LOCATION problem.



LP Relaxation

Conf-LP:

min ) Zg(R)-X,g—i—ZZZd(c,f)-x};

feF RCC ceCfeF R>c

s.t.ZZx,gzl

fEF R>c

Zx,gzl

RCC
xk >0

(1)
Ve e C;
Vf e F;

VRC C, VfeF.



Overview of the algorithm

1. Compute fractional solution to Conf-LP

2. Sample partial assignment S; to remove most of the clients
from the remaining instance

3. Embed the remaining instance into a tree

4. Use filtering techniques to remove the connection cost from
the picture and obtain Descendent-Leaf Assignment problem
(DLA)

5. Approximately solve DLA via LP rounding



2) Reducing the connection cost by removing client

1. Let x be a solution to Conf-LP

2. For InIn N times, sample random partial assignments by
selecting configuration (f, R) indep. with probability x%

3. let C; be the covered clients and S; the partial assignment,

then:
» Each client belongs to C; with large enough probability,

1

< g~ InlnN _ =
Plc¢ Gi]<e ™

» The expected cost of S; is small enough

[E[cost(51)] < Inln N - cost(x)



3) Embedding the remaining instance on an HST

Let X be X restricted to C; = C\ C; we have:
> open(x) < open(x) and E[conn(%)] < X conn(X).

We map the input metric (M, d) into a metric on a Hierarchically
well-Separated Tree (HST), (M, d7) and obtain:

1. Every a € M is mapped to some leaf v(a) of T

2. [E[dr(v(a),v(b))] < 8log|M]|- d(a,b);

3. T has depth O(log dmax)-

Therefore,
[E[conng, (x)] = O(1) - conn(x)



4) Filtering

Focus on a single client:

> Th'n!( of _ Figure 1: A client fractionally connected
fractional connection ¢4 facilities.

as of a unit flow.

» Focus on the
path from the client
to the root of the tree.
> Find
the lowest edge on
the path on which the
flow has value < 0.5.




4) Filtering and Descendent-Leaf Assignment(DLA)

DLA

Goal: Find an assignment
of each ¢ € C to some

f € F. so that the total
opening cost is minimized.

Figure 2: A client restricted to a subtree.

Convex-programming
(CP) relaxation for DLA:

min Z h(z")
feF
s.t. Zzﬁ:l Ve e C.
feF.

zf>0 veeC, vfeF.



5) Solving DLA via LP rounding

We adapt method
f[B » Olver 202

o [ osman, Olver 20 0] Figure 3: A client restricted to a
> proceed by levels bottom-up. ¢ybtree.

» feature of the relaxation:
in extreme solutions,
subsets of clients served
by a facility form a chain.

> when
processing a node: select
a subset of clients (from
the chain) to be integrally
served via threshold.

> merge nodes at the bottom.



Lemma (Bosman, Olver, 2020)

Given x € [0,1]Y and a € (0,1], at least one of the following
holds:

1. there exists 0 € [0, 1], which can be computed in polynomial
time, such that Ly(x) is 55-supported;

2. 2Mf(Li(x)) < F(x).

F(Lg(x))




Summery: (loglog N) approximation for SFL

>

>

vy

Compute a random partial assignment Si,

[E(cost(S1)) < O(loglog N).cost(x)

Obtain residual fractional solution X restricted to S, = C\ 53
and embed it on the HST-type instance, we have:

E[costT(%)] = open(x) + E[connT(X)]
< open(x) + O(log N) - [E[conn(X)]
< O(cost(x)).

Randomly round X to an assignment of S, via a red. to DLA
Obtain Sy of cost at most O(log log N)cost(x)
Return 51 + S as a feasible solution to SFL so that:

E(S1 + S2) < O(log log N) - cost(x)

<
< O(loglog N) - cost(opt)



Open Questions

» |s there any constant approximating for SFL Problem?

P Is there any constant factor approximation over tree instance
for SFL problem?

» |s there O(loglog N) approximation for AFFINE SFL problem
over tree instance, where the opening costs are sobmodular
functions of form gr(S*) = of + wy - g(S7)?
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