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Facility Location

Given:
▶ set of Clients C, set of Facilities F
▶ opening facility cost of

Goal:
▶ minimize

∑
c∈C d(c, F ′(c)) +

∑
f ∈F ′ of
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Submodular Set Functions

g : 2V → R is submodular if:

∀A, B ⊆ V , g(A) + g(B) ≥ g(A ∪ B) + g(A ∩ B)

∀A ⊆ B ⊆ V , ∀x ∈ V /B, g(A∪{x})−g(A) ≥ g(B ∪{x})−g(B)



Submodular Facility Location

Given:
▶ n clients C and m facilities F ,
▶ d : (C ∪ F ) × (C ∪ F ) → R≥0
▶ a monotone submodular opening cost g(.)

Goal:

Minimize
∑
c∈C

d(c, φ(c)) +
∑
f ∈F

g(φ−1(f ))

Where φ : C → F is assignment of each client to some facility



Known Results

SFL is APX-hard [Guha, Khuller,1999]

Svitkina and Tardos show [2010] that:
▶ There is O(log n) approximation for general SFL with multiple

submodular function. The result is tight, becuase of reduction
from Set Cover Problem.

▶ (4.237 + ϵ)approximation for special case of SFL where
sudmodular function g(.) is specified by a rooted cost tree T



Our Results

Main Contribution
▶ There is a polynomial-time O(log log n)-approximation

algorithm for SFL.

Generalizations and Variants
▶ There is a polynomial-time O(log log n)-approximation

algorithm for multSFL.
▶ There is a polynomial-time O(log log n)-approximation

algorithm for addSFL.
▶ There is a polynomial-time O(log log n

πmin
)-approximation

algorithm for the Universal Stochastic Facility
Location problem.
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LP Relaxation

Conf-LP:

min
∑
f ∈F

∑
R⊆C

g(R) · x f
R +

∑
c∈C

∑
f ∈F

∑
R∋c

d(c, f ) · x f
R (1)

s.t.
∑
f ∈F

∑
R∋c

x f
R = 1 ∀c ∈ C ;

∑
R⊆C

x f
R = 1 ∀f ∈ F ;

x f
R ≥ 0 ∀R ⊆ C , ∀f ∈ F .



Overview of the algorithm

1. Compute fractional solution to Conf-LP
2. Sample partial assignment S1 to remove most of the clients

from the remaining instance
3. Embed the remaining instance into a tree
4. Use filtering techniques to remove the connection cost from

the picture and obtain Descendent-Leaf Assignment problem
(DLA)

5. Approximately solve DLA via LP rounding



2) Reducing the connection cost by removing client

1. Let ẋ be a solution to Conf-LP
2. For ln ln N times, sample random partial assignments by

selecting configuration (f , R) indep. with probability ẋ f
R

3. let C1 be the covered clients and S1 the partial assignment,
then:
▶ Each client belongs to C1 with large enough probability,

IP[c /∈ C1] ≤ e− ln ln N = 1
ln N

▶ The expected cost of S1 is small enough

IE[cost(S1)] ≤ ln ln N · cost(ẋ)

.



3) Embedding the remaining instance on an HST

Let ẍ be ẋ restricted to C2 = C \ C1 we have:
▶ open(ẍ) ≤ open(ẋ) and IE[conn(ẍ)] ≤ 1

ln N conn(ẋ).

We map the input metric (M, d) into a metric on a Hierarchically
well-Separated Tree (HST), (M ′, dT ) and obtain:

1. Every a ∈ M is mapped to some leaf v(a) of T
2. IE [dT (v(a), v(b))] ≤ 8 log |M| · d(a, b);
3. T has depth O(log dmax).

Therefore,
IE[conndt (ẍ)] = O(1) · conn(ẋ)

.



4) Filtering

Focus on a single client:

Figure 1: A client fractionally connected
to facilities.

▶ Think of
fractional connection
as of a unit flow.

▶ Focus on the
path from the client
to the root of the tree.

▶ Find
the lowest edge on
the path on which the
flow has value < 0.5.



4) Filtering and Descendent-Leaf Assignment(DLA)

DLA

Figure 2: A client restricted to a subtree.

Goal: Find an assignment
of each c ∈ C̃ to some
f ∈ F̃c so that the total
opening cost is minimized.

Convex-programming
(CP) relaxation for DLA:

min
∑
f ∈F̃

ĥ(z f )

s.t.
∑
f ∈F̃c

z f
c = 1 ∀c ∈ C̃ .

z f
c ≥ 0 ∀c ∈ C̃ , ∀f ∈ F̃ .



5) Solving DLA via LP rounding

Figure 3: A client restricted to a
subtree.

We adapt method
of [Bosman, Olver 2020]
▶ proceed by levels bottom-up.
▶ feature of the relaxation:

in extreme solutions,
subsets of clients served
by a facility form a chain.

▶ when
processing a node: select
a subset of clients (from
the chain) to be integrally
served via threshold.

▶ merge nodes at the bottom.



Lemma (Bosman, Olver, 2020)
Given x ∈ [0, 1]V and α ∈ (0, 1], at least one of the following
holds:

1. there exists θ ∈ [0, 1], which can be computed in polynomial
time, such that Lθ(x) is α

32 -supported;
2. 21/αf (L1(x)) ≤ f̂ (x).



Summery: (log log N) approximation for SFL
▶ Compute a random partial assignment S1,

IE(cost(S1)) ≤ O(log log N).cost(ẋ)
▶ Obtain residual fractional solution ẍ restricted to S2 = C \ S1

and embed it on the HST-type instance, we have:

IE[costT (ẍ)] = open(ẍ) + IE[connT (ẍ)]
≤ open(ẋ) + O(log N) · IE[conn(ẍ)]
≤ O(cost(ẋ)).

▶ Randomly round ẍ to an assignment of S2 via a red. to DLA
▶ Obtain S2 of cost at most O(log log N)cost(ẋ)
▶ Return S1 + S2 as a feasible solution to SFL so that:

IE(S1 + S2) ≤ O(log log N) · cost(ẋ)
≤ O(log log N) · cost(opt)



Open Questions

▶ Is there any constant approximating for SFL Problem?
▶ Is there any constant factor approximation over tree instance

for SFL problem?
▶ Is there O(log log N) approximation for AFFINE SFL problem

over tree instance, where the opening costs are sobmodular
functions of form gf (S f ) = of + wf · g(S f )?
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