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Network Design

Given a network with edge costs, find a cheapest subgraph satisfying given
connectivity requirements.

Uniform edge connectivity,

Survivable network design,

Capacitated network design,

Flexible graph connectivity...
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Edge Augmentation: A subroutine

Given a family of cuts F , find a cheapest subgraph that covers every cut
i.e. F ∩ δ(S) ̸= ∅ for all S ∈ F .

Tree Augmentation,

Cactus Augmentation,

Steiner Tree Augmentation,

Matching Augmentation...
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Edge augmentation needs structure

Generalizes set cover.

O(log |E |) hardness of approximation algorithm in general.

Can do better if F has structure.

Williamson, Goemans, Mihail, Vazirani (WGMV) in 1995 considered
families F that are uncrossable and provided a 2-approximation
algorithm.
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Uncrossable Families

A family of sets F ⊆ 2V is called uncrossable if

A,B ∈ F =⇒ (A ∪ B ∈ F AND A ∩ B ∈ F) OR

(A \ B ∈ F AND B \ A ∈ F)
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Augmentation of Uncrossable Families

Williamson et al. provided a 2-approximation primal-dual algorithm
for augmenting uncrossable families.

They observed and leveraged two key properties:

i) Non-crossing minimal sets: Any inclusion-wise minimal set in F does
not “cross” any other set in F .
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Augmentation of Uncrossable Families

Williamson et al. provided a 2-approximation primal-dual algorithm
for augmenting uncrossable families.

They observed and leveraged two key properties:

i) Non-crossing minimal sets
ii) Dual laminarity: There exists an optimal solution y∗ to the dual linear

program such that the sets S with y∗
S > 0 form a laminar family (no

pair of sets cross).

A Laminar Family
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Augmentation of Uncrossable Families

Williamson et al. provided a 2-approximation.
They observed and leveraged two key properties:

i) Non-crossing minimal sets
ii) Dual Laminarity

For many years, it was believed that uncrossability and dual laminarity
are essential and almost all problems in network design with
O(1)-approximations use uncrossability and/or dual laminarity.

Challenging open question whether O(1)-approximations can be
obtained for families that are not uncrossable.
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Generalizing Uncrossable Families

There exist interesting and naturally arising families of cuts that are
not captured by uncrossable families.

For example near min-cuts: For a network with capacities on the
edges and a threshold α ≥ 0, the family of cuts with total capacity at
most α is not uncrossable.
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Pliable Families

A family of sets F is called pliable if

A,B ∈ F implies at least two of the four sets

{A ∪ B,A ∩ B,A \ B,B \ A} also lie in F
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Primal-Dual Method for Edge Augmentation

Primal LP

min
∑
e∈E

cexe

subject to:
∑

e∈δ(S)

xe ≥ 1 ∀S ∈ F

xe ≥ 0

Dual LP

max
∑
S∈F

yS

subject to:
∑

S∈F :e∈δ(S)

yS ≤ ce ∀e ∈ E

yS ≥ 0

Phase 1: Starting from the empty set of edges,

Increase uniformly the dual variables corresponding to the minimal
sets of F ,

Add edges to solution when dual constraint becomes tight,

Repeat until feasible.

Phase 2: In reverse order of edge additions, delete edges that are not
required.
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Primal-Dual Method for Pliable Families

Does the primal-dual method for edge augmentation work for pliable
families? No
We show a counterexample where the primal-dual method provides a
solution that is a factor Ω(

√
|V |) worse than the optimal solution.

A major issue seems to be that minimal sets of F start to cross other
sets in F .

Turns out pliable families that we know of (like near min-cuts) have
an additional property that can be leveraged.
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Property Gamma

The number of crossings between minimal sets of F and other sets of F is
proportional to the total number of minimal sets of F .

More formally,

C

S1 S2

S2 \ (S1 ∪ C ) is either empty or
lies in F
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Pliable Families with Property Gamma

Theorem (B., Cheriyan, Grout, Ibrahimpur)

The primal-dual algorithm for edge augmentation is a 16-approximation
algorithm on pliable families satisfying property gamma.

Pliable families satisfying property gamma need not have the two key
properties that are typically used to obtain O(1)-approximation
algorithms for network design problems:

i) Non-crossing minimal sets.
ii) Dual laminarity.
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Proof Sketch

Goal: In every iteration of the primal-dual, the average degree of
minimal sets is bounded in our final solution F .

Primal LP

min
∑
e∈E

cexe

subject to:
∑

e∈δ(S)

xe ≥ 1 ∀S ∈ F

xe ≥ 0

Dual LP

max
∑
S∈F

yS
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Witness Sets

For every edge e incident to a minimal set, assign a witness set Se such
that

Se ∈ F
δ(Se) ∩ F = {e}
The family of witness sets {Se} is laminar

V

S1 S2

S3 S4
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Bounding Average Degree: Uncrossable Case

To every minimal set C , assign the smallest witness set SC that
contains it.

For an edge e ∈ δ(C ), the witness set Se is either SC or a child of SC .

C SeSC
e

C SC = See

The degree of C is paid for by the degree of SC in the witness tree.

Handshaking lemma shows that the average degree of minimal sets is
at most 2.
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Bounding Average Degree: Pliable Case

For an edge e ∈ δ(C ), the witness set Se could be a distant
descendant of SC .

e
C SeSC

SC

S1

S2

Se

Hence, primal-dual does not work for pliable families in general.
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Bounding Average Degree: Property Gamma

For an edge e ∈ δ(C ), the witness set Se could be a distant
descendant of SC .

e
C SeSC

SC

S1

S2

Se

S

S

Property gamma ensures that the shaded region contains a minimal
set.

This minimal set can ‘pay’ for the degree of set C .
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Applications: Flexible Graph Connectivity

Introduced by Adjiashvili, Hommelsheim, Mühlenthaler (2022).

Given a graph with edge costs and a partition of the edge set into
safe and unsafe edges, find a cheapest p-edge connected subgraph
tolerant to q unsafe edge failures.

When q = 2,

i) Boyd, Cheriyan, Haddadan, Ibrahimpur (2023) showed an O(log |V |)
approximation algorithm (essentially set cover).

ii) Chekuri, Jain (2023) showed an O(p) approximation algorithm
(problem splits into augmenting p uncrossable families)

Theorem (B., Cheriyan, Grout, Ibrahimpur)

The (p, 2)-flexible graph connectivty problem admits a 20-approximation
algorithm.
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Nutov (2023) improved the factor to 7 + ϵ.

We showed that a constant factor can be obtained for (p, 3)-flexible
graph connectivity as well.
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Applications: Capacitated Edge Connectivity

Theorem (B., Cheriyan, Grout, Ibrahimpur)

The problem of augmenting near-min cuts of a graph (with arbitrary
thresholds) admits a 16-approximation algorithm.

Given a graph with edge costs and capacities, find a cheapest k-edge
connected subgraph (with capacities).

Goemans et al. (1994) provided a 2k-approximation algorithm.

Boyd et al. (2023) provided a k-approximation algorithm.

Theorem (B., Cheriyan, Grout, Ibrahimpur)

The capacitated edge connectivity problem admits an O(k/umin)
approximation algorithm where umin is the minimum capacity of an edge.
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Takeaways and Open Questions

The folklore belief for around 28 years that uncrossability is essential
for primal-dual algorithms to work in the context of network design is
not true!

Constant factor approximations can be obtained for network design
problems even when laminar supported dual optimal solutions do not
exist!

Can we get rid of property gamma using techniques other than primal
dual?

Is there an exact characterization of a property that is necessary and
sufficient for primal-dual to work on pliable families?

Can we cover a general pliable family using O(1) pliable families
satisfying property gamma?
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