SMOOTH AND TOPOLOGICAL PSEUDOCONVEXITY IN COMPLEX SURFACES

ROBERT E. GOMPF

Question. a) When can an open subset of a complex surface be deformed (isotoped) into a Stein open subset (domain of holomorphy)?

b) When can a compact 4-manifold embedded in a complex surface be isotoped to be (strictly) pseudoconvex (PC) (Stein domain)?

Theorem 1. [2] Both work iff the inherited almost-complex structure J on the domain is homotopic to a Stein structure on it.

Basic idea: Eliashberg's technique already works inside a complex manifold. Now follows in all dimensions from a theorem in the Cieliebak–Eliashberg book.

Examples. a) Many compact, contractible Stein surfaces embed in \mathbb{C}^2 . These can all be assumed PC. (*J* is unique.) Gives lots of PC embedded homology 3-spheres. (What about Brieskorn spheres?)

b) Stein embedded exotic \mathbb{R}^4 's in \mathbb{C}^2 . (Uncountably many diffeomorphism types.)

c) Every Stein open subset of \mathbb{C}^2 is homeomorphic, not diffeomorphic to uncountably many others.

For domains with homology, the condition on J is nontrivial. We can eliminate it by passing to the topological (C^0) category:

Theorem 2. [3] An open subset U of a complex surface is **topologically** isotopic to a Stein open set iff it is homeomorphic to a 2-handlebody interior.

This typically changes the smooth structure on U, resulting in infinite smooth topology. Basic idea: Apply work of Casson–Freedman. The 2-handle cores may not be totally real or even smoothable. But can make them totally real *immersed*. Iterate.

Examples. a) Every embedding $S^2 \hookrightarrow \mathbb{C}^2$ has neighborhood $S^2 \times \mathbb{R}^2$ that can be made Stein (but with no smooth S^2 inside).

b) For K topologically but not smoothly slice, its trace X_K embeds unsmoothably in \mathbb{C}^2 and its interior can be made Stein.

c) Theorem 1 gives smooth, compact Stein domains in \mathbb{C}^2 with the homotopy type of S^2 (not knot traces).

Now suppose X is a compact 2-handlebody topologically embedded in a complex surface, with a topological collar $I \times \partial X$ outside it (so not wild).

Call X topologically pseudoconvex (TPC) if it is also a Stein compact, i.e., has a Stein neighborhood system. This implies int X is Stein.

Theorem 2 extends to make X TPC (by *ambient* isotopy).

Now examples (a,b) give TPC embeddings of $S^2 \times D^2$ and X_K .

Digging deeper into Freedman's proof extends to an uncountable nest of TPC embeddings:

Definition 1. [4] A Stein onion consists of a closed 3-manifold M, a Stein surface U and a continuous surjection $\psi \colon [0,1) \times M \to U$ restricting to a homeomorphic embedding on $(0,1) \times M$ such that the open subset $\psi([0,\sigma) \times M)$ is Stein whenever σ is in the Cantor set.

Its core $\psi(0)$ is then a Stein compact with an uncountable nested system of Stein neighborhoods (all homeomorphic) with TPC closures.

Theorem 3. [3] A collared, topologically embedded 2-handlebody in a complex surface is topologically ambiently isotopic to a layer of a Stein onion.

Examples. a) Every compact, tame, topological 2-complex in a complex surface is ambiently isotopic to the core of a Stein onion. Its cells become smooth and totally real, except for one singularity on each 2-cell.

b) For every complex surface S, every $\alpha \in H_2(S)$ can be realized by a smooth surface. Any such becomes the core of a Stein onion. This can be chosen so that the Stein neighborhoods realize all sufficiently large minimal genera, or stabilize at a preassigned upper bound.

If $\alpha \cdot \alpha \leq 0$, each such minimal genus is realized by uncountably many diffeomorphism types within the given Stein onion.

Call a topologically embedded 3-manifold M TPC if it has a neighborhood biholomorphic to a neighborhood of the boundary of some TPC 4-manifold (in a possibly different complex surface).

Like smooth PC embeddings, a TPC embedding in a Stein manifold cuts out a Stein compact (so an open Stein surface).

PC 3-manifolds inherit contact structures. On any 3-manifold M (up to homotopy)

plane fields on $M \iff$ almost complex structures on $\mathbb{R} \times M$.

A TPC 3-manifold M inherits a complex structure on a neighborhood *homeomorphic* to $\mathbb{R} \times M$. These can be classified homeomorphism-invariantly [4]. TPC embeddings are much more common than smooth PC embeddings:

Theorem 4. a) [3] Every closed, oriented M^3 admits a TPC embedding in every simply connected, compact complex surface S with $b_{\pm}(S)$ sufficiently large. b) [4] Every J on M can be realized this way when div $c_1(S)$ divides div $c_1(J)$ (so whenever S is nonminimal, since div $c_1(S) = 1$).

Basic idea: Explicitly realize these by Stein onions.

Smoothly pseudoconcave examples [2]:

a) Knot traces whenever $tb(\overline{K}) \geq -1$ and the framing is sufficiently large

b) $I \times M$ where M is a circle bundle over F with $|e(M)| \leq -\chi(F)$

- or M the Brieskorn sphere $(p, q, npq 1) \neq (2, 3, 5)$
- c) the corresponding Milnor fiber.

d) Every simply connected, compact complex surface contains a pseudoconcave contractible manifold.

It also contains uncountably many **topologically** pseudoconcave exotic \mathbb{R}^4 's [3].

References

- Stein surfaces as open subsets of \mathbb{C}^2 , J. Symplectic Geom. **3** (2005), 565-587. (Expository warm-up) [1]
- [2] [3] [4] Smooth embeddings with Stein surface images, J. of Topology 6 (2013), 915–944.
- Creating Stein surfaces by topological isotopy, J. Differ. Geom., to appear, arXiv:2002.02042.
- Topological convexity in complex surfaces, Asian J. Math., to appear, arXiv:2010.05114.