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Definitions

Definition

If K ⊂ Cn is compact, the polynomially convex hull of K is the set

K̂ = {z ∈ Cn : |P(z)| ≤ max
w∈K
|P(w)| for any polynomial P}.

K is called polynomially convex if K = K̂ . Similarly, the rationally convex
hull of a compact K is

R-hull(K ) = {z : |R(z)| ≤ max
w∈K
|R(w)|, ∀R rational, poles off K}.

K is rationally convex if K = R-hull(K ).

Polynomial convexity is holomorphic convexity with respect to Cn, i.e.,
K̂ = K̂O(Cn) for all compacts K ⊂ Cn.

Further, K ⊂ R-hull(K ) ⊂ K̂ , and K̂ and R-hull(K ) are compact for any
compact K .
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Example 1

Some examples:
(1) A compact set K ⊂ C is polynomially convex iff C \ K is connected.
Any compact K ⊂ C is rationally convex.

In higher dimensions Forstneric (Michigan Math. J.,1993) proved the
following: if K ⊂ Cn is polynomially convex, n ≥ 1, then for
j = 0, 1, . . . , n − 1 we have πj(Cn \ K ) = 0. In particular,
Hj(Cn \ K ,Z) = 0.

In general, rationally or polynomially convex compacts cannot be
identified by topological properties only. For example, Izzo (Proc. of
AMS, 2019) proved the following: let K ⊂ Rn be an arbitrary
uncountable compact, then there exists X ⊂ Cn+4 homeomorphic to K
such that X has nontrivial polynomially and rationally convex hulls; the
inclusion K ⊂ Rn ⊂ Cn is polynomially convex.
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Example 2

(2) Let M be a compact real submanifold of Cn, and f : D→ Cn be a
holomorphic map, f ∈ C 0(D), and f (bD) ⊂ M (i.e., f is a holomorphic
disc attached to M). Then f (D) ⊂ M̂.

One may wonder if the hull always contains a holomorphic disc, this is
known as ”analytic structure” in the hull. For example, this trivially holds
for compacts in C. Also, if γ ⊂ Cn is a closed rectifiable curve, then
either γ is polynomially convex, or γ̂ \ γ is a purely one-dimensional
subvariety of Cn \ γ. (Any rectifiable closed curve in Cn is rationally
convex.)

Further, the following was proved by Alexander (Michigan Math. J.
1977), Basener (Pros. of AMS, 1975), and Sibony (LNM 512, 1976): If
K ⊂ Cn is such that K̂ \K has finite two-dimensional Hausdorff measure,
then K̂ \ K is a one-dimensional subvariety of Cn \ K. (However, K̂ may
contain nonempty interior in Cn even for a Cantor set K .)
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Example 2 cont’d

But in general the answer is NO. Stolzenberg (J. Math. Mech., 1963)
was the first to construct a counterexample: there exists a compact
K ⊂ C2 such that K̂ \ K 6= ∅ but contains no holomorphic disc. By now
there exist dozens of various examples of this phenomenon, see, e.g., a
survey by Levenberg (Kyoto 1996).

Nevertheless, polynomially convex hulls exhibit some ”attributes” of an
analytic structure, for example, Rossi’s Maximum Principle:

Theorem (Rossi, Ann. of Math., 1960)

Let p ∈ K̂ \ K, and let V be a relatively compact neighbourhood of p
that does not intersect K. Then for any holomorphic f ,
|f (p)| ≤ sup{|f (w)| : w ∈ K̂ ∩ bV }.

In general, f (D) is not necessarily part of R-hull(K ), e.g., S1 × S1 is
rationally convex. But if K is a surface and f (bD) bounds a domain in
K , then f (D) ⊂ R-hull(K ).
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Example 3

(3) If K is any compact subset of Rn
x , z ∈ C, z = x + iy ,

x = (x1, . . . , xn) ∈ Rn = Rn
x , then K is rationally and polynomially

convex, and R(K ) = P(K ) = C(K ).

Rn
x is an example of a totally real manifold (Recall that a real

submanifold M ⊂ Cn is called totally real, if for any p ∈ M, the linear
space TpM, viewed as a linear subspace of Cn, contains no complex
linear subspaces of positive dimension).
One may wonder if the above statement holds for all compacts in totally
real submanifolds. This is false: there are examples of totally real discs
that are not rationally convex, or that are rationally convex but not
polynomially convex. Also note that no smooth manifold M ⊂ Cn with
dimRM > n, is polynomially or rationally convex (such M always
contains an open subset which is a CR manifold of positive
CR-dimension).

We will discuss convexity properties of totally real submanifolds of Cn

later in the talk.
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Characterizations of convexity 1

Formal definitions of polynomial and rational convexity are difficult to
verify for a given compact K ⊂ Cn, but several characterizations exist.

K is rationally convex iff for any p ∈ Cn \ K there exists a complex
hypersurface Z ⊂ Cn such that p ∈ Z , but Z ∩ K = ∅. The proof is
elementary.

Analogous statement for polynomial convexity is more complicated and is
known as Oka’s Characterization.

Theorem (Oka’s characterization of polynomial convexity)

A point p /∈ K̂ iff there exists a continuous family {Vt}t∈[0,1) of complex
hypersurfaces in Cn such that p ∈ V0, Vt ∩ K = ∅ for all t, and {Vt}
diverges to infinity as t → 1−.

Other characterizations also exist. A pseudoconvex domain Ω ⊂ Cn is
called a Runge domain if polynomials (or entire functions) are dense in
O(Ω).
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Characterizations of convexity 2

Theorem (Poletsky, Indiana Univ. Math. J., 1993)

Let Ω ⊂ Cn be a bounded pseudoconvex Runge domain and K ⊂ Ω be
compact. Then p ∈ K̂ iff for any open neighbourhood U of K and ε > 0
there exists a holomorphic map fε : D→ Ω such that fε(0) = p and such
that σ({ζ ∈ bD : fε(ζ) /∈ U}) < ε.

Here σ is normalized Lebesgue measure on bD. The maps fε are known
as Poletsky discs.

Theorem (Duval-Sibony, Duke Math. J., 1995)

For a compact K ⊂ Cn, the following are equivalent: (a) p ∈ K̂ ; (b)
there exists a positive (1, 1)-current T in Cn such that ddcT = µ− δx ,
for a probability measure µ supported in K.

Wold (J. Geom. Anal., 2011) showed that Poletsky discs can be used to
construct the Duval-Sibony current T . Existence of T in the hull
perhaps explains Rossi’s Maximum Principle.
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Unions of balls

Connected components of polynomially convex compacts are
polynomially convex. But the unions of polynomially convex compacts
are surprisingly difficult to analyze.

Theorem (Kallin, 1964)

The union of three mutually disjoint closed balls in Cn is polynomially
convex.

Whether any disjoint union of 4 or more balls is polynomially convex is
an open problem!!! This is false for unions of convex compacts or
polydiscs. The corresponding problem of rational convexity of unions of
balls was resolved by Nemirovski:

Theorem (Nemirovski (Russian Math. Surveys 2008))

Any finite disjoint union of closed balls in Cn is rationally convex.
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Hulls and PSH functions

Underneath any complex-analytic object there are psh functions!

Definition

Given a compact K ⊂ Cn, the hull of K with respect to the family of
plurisubharmonic functions is

psh-hull(K ) = {p : u(z) ≤ sup
K

u, for all psh functions on Cn}.

Similarly, this hull can be defined on any domain of Cn or on complex
manifolds that admit nonconstant psh functions.

In the definition above psh functions can be taken to be continuous. The
fundamental connection with polynomial convexity is the following

Theorem

For K ⊂ Cn compact, we have K̂ = psh-hull(K ).
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Hulls and PSH functions 2

This shows, in particular, that the notion of polynomial convexity can be
generalized to manifolds where there are no holomorphic polynomials,
but there are psh functions. For example, this can be done on an almost
complex manifold (M, J): un upper semicontinuous function is called
J-psh if its composition with any J-holomorphic disc f : D→ M is
subharmonic on D. Rosay (Michigan Math. J., 2006) proved that the
hulls with respect to J-psh functions satisfy Rossi’s Maximum Principle.

Returning to Cn, we have the following

Theorem (Stout, Polynomial Convexity, 2006)

If K ⊂ Cn is polynomially convex, then there exists a nonnegative psh
function v on Cn with limz→∞ v(z) =∞ and v−1(0) = K. Further, v
can be chosen to be C∞ smooth and spsh on Cn \ K. Conversely, if v is
a nonnegative psh function on Cn such that limz→∞ =∞, then {v = 0}
is polynomially convex.
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Hulls and PSH functions 3

What about psh functions and rational convexity?

Theorem (Duval-Sibony, Duke Math. J., 1995)

If K ⊂ Cn is a rationally convex compact, then there exists a smooth
closed (1, 1) form ωK which vanishes on K and is positive on Cn \ K.
The potential of ωK is a psh function.

Theorem (Duval-Sibony, Duke Math. J., 1995)

Let M be a smooth compact totally real submanifold of Cn. Then M is
rationally convex iff there exists a Kähler form ω such that M is isotropic
(Lagrangian) with respect to ω.

One direction can be derived by observing that ω can be obtained by
”gluing” ωK as above with the ddc of the square-distance function to M
(which is an spsh function on a neighbourhood of M). The other
direction is a fairly technical construction of complex hypersurfaces in the
complement of M using Hörmander’s L2-methods and solvability of ∂.
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rationally convex iff there exists a Kähler form ω such that M is isotropic
(Lagrangian) with respect to ω.

One direction can be derived by observing that ω can be obtained by
”gluing” ωK as above with the ddc of the square-distance function to M
(which is an spsh function on a neighbourhood of M). The other
direction is a fairly technical construction of complex hypersurfaces in the
complement of M using Hörmander’s L2-methods and solvability of ∂.
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Duval-Sibony: examples

Another characterization of rational convexity that stems from the
Duval-Sibony was explicitly formulated by Nemirovski.

Theorem (Duval-Sibony; Nemirovski, Russian Math. Surveys 2008)

Let φ be a strictly plurisubharmonic function on an open subset U ⊂ Cn,
such that ddcφ extends to a positive d-closed (1, 1)-form on the whole
Cn. If the set {z ∈ U : φ(z) ≤ 0} is compact, then it is rationally convex.

Examples:

1) T n = S1 × · · · × S1 is Lagrangian in Cn and so is rationally convex.
2) Let S ⊂ C3 be a totally real embedded 3-sphere. Then S is not
rationally convex. Proof: if it were, then S would be Lagrangian by
Duval-Sibony, and by Gromov it would admit a nontrivial holomorphic
disc attached to S . But the boundary of the disc bounds a domain in S ,
and so the whole disc has to be in the rationally convex hull of S .
Contradiction.
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Generalizations of Duval-Sibony 2

So rational convexity appears to be related to the values of the Levi form
ddc of psh functions rather than the values of the functions themselves.

Several generalizations of Duval-Sibony exist:

* Gayet (Ann. Sci. Ecole Norm. Sup., 2000): Lagrangian immersions
with transverse double self-intersection points are rationally convex.
However, rationally convex immersions are not necessarily Lagrangian:
there exists a union of two totally real planes in C2 intersecting at the
origin that are rationally convex when intersected with any large ball, but
the union is not Lagrangian with respect to any Kähler form in C2, see
Mitrea (J. Geom. Anal., 2020).
* Guedj (Math Ann., 2000): Closed isotropic embeddings into projective
manifolds.
* Auroux, Gayet, Mohsen (Math. Ann., 2001): Closed Kähler manifolds
– rational convexity is proved using Donaldson’s method (J. Diff. Geom.,
1996).
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Generalizations of Duval-Sibony 2

* Mitrea (J. Geom. Anal., 2020): Rational convexity of immersions in
terms of Kähler forms that are degenerate near singular points.
* Boudreaux - RS (Bull. London Math Soc., 2023) Rational convexity of
totally real sets (zeros of spsh functions).

Conjecture: An immersed totally real submanifold M ⊂ Cn is rationally
convex if and only if there exists a psh function φ on Cn such that
ddcφ > 0 outside the self-intersections of M, and M is isotropic
(Lagrangian) with respect to ddcφ.
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Convex embeddings

A natural question that arises: what are the (closed) smooth manifolds
that admit rationally convex (or polynomially convex) embeddings into
Cn?

Theorem (Browder, 1961; Duchamp-Stout, 1981)

No topological closed submanifold of Cn of dimension n is polynomially
convex.

The proof can be derived from the homology result mentioned above: If
M ⊂ Cn is polynomially convex, then Hn−1(Cn \M) = 0; by the
Alexander duality, Ȟn(M,Z) = Hn−1(Cn \M) = 0; but Ȟn(M,Z) = Z or
Z2. This still leaves a possibility of rationally convex embedding of
n-manifolds in Cn.

Theorem (Sukhov-RS, Enseign. Math., 2016)

Let S be a closed surface, S 6= S2,RP2. Then there exists a topological
rationally convex embedding of S into C2.
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Rationally convex embeddings of surfaces 1

If one considers only smooth totally real embeddings, then a rationally
convex surface S ⊂ C2 is necessarily Lagrangian according to
Duval-Sibony. This clearly limits the possibilities for S , for example, of
the orientable surfaces only the torus admits a Lagrangian (or even
totally real) embedding. To overcome this we use the following result.

Theorem (Givental, Funk. Anal. i Prilozh., (1986))

Any closed surface admits a Lagrangian inclusion into C2, i.e., a smooth
map ι : S → C2 which is a local Lagrangian embedding (i.e., ι∗ωst = 0)
except a finite set of singular points that are either transverse double
self-intersections (or simply double points) or the so-called open Whitney
umbrellas.
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Rationally convex embeddings of surfaces 2

The standard open Whitney umbrella is the map

π : R2
(t,s) 3 (t, s) 7→ (ts, (2/3)t3, t2, s) ∈ R4

(x ,u,y ,v)
∼= C2. (1)

The map π is a homeomorphism, smooth away from the origin, onto a
semialgebraic set with an isolated singularity. General open Whitney
umbrellas are defined as images of the standard umbrella under a local
symplectomorphism.

If S is orientable then any inclusion satisfies (Audin, JGP, 1990)

− χ(S) + 2 · d −m = 0, (2)

(counting index), and if S is nonorientable, then

χ(S) + 2 · d −m = 0 mod 4. (3)

Here χ(S) is the Euler characteristic of S , d is the number of double
points, and m is the number of umbrella points.
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Rationally convex embeddings of surfaces 3

Audin showed that any admissible combination of χ(S), d , and m is
realizable in the orientable case. So if χ(S) ≤ 0, then we may choose
d = 0, and m = −χ(S), i.e., any orientable surface, except S2, admits a
singular Lagrangian embedding (inclusion without double points), while
the map

W : R3 3 (t, s, τ)→ (t + itτ, s + isτ) ∈ C2 (4)

is a Lagrangian immersion of S2 with one double point (Whitney sphere).

In the nonorientable case Givental showed that if χ(S) ≤ −2, then one
may take d = 0, i.e., such surfaces admit a singular Lagrangian
embedding into C2. Further, Nemirovski and Siegel (Invent. Math.,
2016) gave all possibilities for the number of umbrellas that may appear
in a singular Lagrangian embedding of an arbitrary closed surface S . In
particular, all nonorientable surfaces except RP2 admit a singular
Lagrangian embedding in C2. E.g., the Klein bottle requires 4 umbrellas.
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Rationally convex embeddings of surfaces 4

For rationally convex embedding of surfaces, we prove that any
Lagrangian inclusion into C2 (with Whitney umbrellas and double points)
is rationally convex. The proof is a modification of the proof of
Duval-Sibony and Gayet (Ann. Sci. Ecole Norm. Sup, 2000). An
important ingredient of the proof is the following local result

Theorem (Sukhov-RS (IMRN 2013), Mitrea-Sh (Proc. of AMS, 2016))

Whitney umbrellas are locally polynomially convex.

The standard umbrella is contained in the singular real hypersurface
M = {x2 − yv2 + (9/4)u2 − y3 = 0}, note that the defining function is
spsh. Polynomial convexity can be proved by studying the characteristic
foliation on the umbrella with respect to M. The foliation is defined by a
system of ODE

ṫ = −3t3 − ts2 − 3t5, ṡ = s3 + 4t2s + 7st4
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Theorem (Sukhov-RS (Trans. of AMS 2016))

The union of two Lagrangian submanifolds in Cn is locally polynomially
convex at the transverse double point.

Local polynomial convexity gives us a nonnegative psh function that
vanishes on the Lagrangian inclusion near singular points; this function is
used to modify the argument of Duval-Sibony and Gayet to work near
the singularity.

It is an open question whether S2 or RP2 admit a rationally convex
embedding into C2. Such an embedding, if exists, is unlikely to be
smooth.

Little is known about rationally convex embeddings of closed
n-dimensional manifolds into Cn for n ≥ 3.
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Thank you! Merci!
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