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Can we improve rain prediction?



Convective/Storm scale application
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I High resolution NWP models of atmosphere that incorporate our
knowledge of the dynamics and physics.

I In addition to dynamical variables, prognostic hydrometeors variables
(rain, graupel, snow, ...) at all grid points
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Uncertainty of geophysical models

I These models are not perfect. We need to specify background
uncertainty including model error uncertainty.

I Forecast error for convective storms is often location and amplitude
error



Observations

I In addition to global observing system, radar is the primary new
observation.



Data assimilation algorithms

I Both ensemble and variational DA methods in use operationally
(Gustafsson et al. 2018).

I Prognostic hydrometeors variables (rain, graupel, snow, ...) are
operationally not updated.

I Due to the fast changing convection we would like to produce
frequent updates of model variables with data. Operationally hourly
updates.

I Much of the effort put in modelling of background error covariance
and model error representation (Zeng et al. 2018, 2019, JAMES, Zeng
et al. 2020 MWR, Feng et al 2021, JAMES)

I But also observational error covariance for radar data (Waller et al.
2019, MWR; Zeng et al. 2021, AMT).

I Overview of challenges in Gustafsson et al. 2018 and Bannister et al.
2019, QJRMS.
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A problem on convective scale

Idealized setup for radar DA

Zeng et al. 2021: Assimilating radar radial wind and reflectivity

data in an idealized setup of the COSMO-KENDA system,

Atmospheric Research, 249, 105282,

https://doi.org/10.1016/j.atmosres.2020.105282.

Analysis mass of all hydro-
meteors compared to truth
during DA
(Janjic and Zeng, 2021).



Convective/Storm Scale DA Challenges
Problem high-dimensional, nonlinear and highly non-Gaussian.

1 Uncertainty quantification is a challenge for both model and
observation error.

2 Forecast error for convective storms is often location and amplitude
error.

3 In addition to dynamical variables, the state vector xbk at time k
should consist of prognostic hydrometeors variables (rain, graupel,
snow, ...) at all grid points

4 Depending on microphysical scheme in model, even higher
dimensional problem with third of the variables (one order of
magnitude) that need to be nonnegative

5 We need fast algorithms applicable for large scale problems due to
the computational costs of producing non-negative estimates, the
frequency of their estimation, and the need to initialize probabilistic
prediction.

DA methods would require a better way to estimate (multivariately)
prognostic hydrometeors. This is a challenging task, in particular, due to
spurious convections triggered.
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— Some solutions —
I Physical

properties/Conservation laws
I Weak formulation for

mass/positivity constraints



QPEns

Propagation step. Propagate the mean and the covariance with the
dynamics between observations. Prior to new observation we have wb

k

and its covariance Pb
k .
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Kalman analysis.
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Derived using qi ∼ N (0,Q), r i ∼ N (0,R), wb
0 ∼ N (0,Pb

0) and all
uncorrelated.



QPEns algorithm

wa,i
k = wb,i

k + arg min
δw i

1
2
[δwi T (Pb)−1δwi + f i

T
R−1f i ]

subject to

δwi ≥ −wb,i
k . i = 1, . . .N

δwi = wa,i
k −wb,i

k , f i = wo,i
k −Hkwb,i

k −Hkδwi − rok .

Janjic, T., D. McLaughlin, S. E. Cohn, M. Verlaan, 2014: Conservation of mass and preservation of positivity with

ensemble-type Kalman filter algorithms, Mon. Wea. Rev., 142, No. 2, 755-773.



Modified shallow water model
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Wuersch and Craig 2014: A simple dynamical model of cumulus convection for data assimilation research.,

Meteorol. Z., 23, 483-490.



Ruckstuhl and Janjic 2018: Parameter and state estimation with ensemble Kalman filter based algorithms for

convective scale applications. Q.J.R. Meteorol. Soc.. 144:712, 826–841, doi:10.1002/qj.3257.



Application of QPEns to high dimensional
systems

I High dimensional problem with third of the variables that need to be
nonnegative and high update frequency

I We use the fact that constraints on mass and positivity are disjoint
I Active-set algorithm whose feature is to maintain feasibility with

respect to the linear mass equality constraints on at each iteration,
while at the same time using classical projection techniques to
enforce positivity:

Alg1 still requires solving the Karush–Kuhn–Tucker (KKT) system
Alg2 exploits the low rank of the linear equality constraints (mass) and

uses a well-known iterative approach to compute a possibly
approximate solution while ensuring satisfaction of the constraint.

Janjić, T., Y. Ruckstuhl and P. Toint, 2021: A data assimilation algorithm for predicting rain, Q. J. R. Meteorol.

Soc., 1949 –1963, doi:10.1002/qj.4004
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Modified shallow water model tests
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Janjić, T., Y. Ruckstuhl and P. Toint, 2021: A data assimilation algorithm for predicting rain, Q. J. R. Meteorol.

Soc., doi:10.1002/qj.4004



Alternative approach via NN

Left: Deviation in total mass and
total rain for NN trained on QPEns
analysis obtained with 5 min and
10 min updates. Also EnKF and
QPEns results are shown for com-
parison.

Right: For 10 minutes update if
in addition penalty on mass is
imposed during training.

Ruckstuhl, Y., T. Janjić, S. Rasp, 2021: Training a convolutional neural network to conserve mass in data

assimilation, Nonlin. Processes Geophys., 28, 111–119, https://doi.org/10.5194/npg-28-111-2021.



Weak Constraint Convective scale

I DA on convective scales should update hydrometeors
I Operationally hydrometeors are not updated (Gustafsson et al. 2018)
I Assimilation of observations such as radar reflectivity or cloud

products are important for prediction on convective scales

I When DA algorithms update hydrometeors they clip negative values
to zeros, modifying mass

I Janjic et al. 2014 show that is important to preserve both positivity
and mass with DA algorithm when estimating variables that should
be non-negative

I Here, we propose a fast, easy to implement modification of LETKF
that is able to weakly preserve both properties of mass conservation
for each hydrometeor variable and non-negativity.
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Weakly Constrained LETKF

min
x

J(x) = Jb(x) + Jo(x) + Jm(x)

=
1
2
(xbk − x)Pb−1

k (xbk − x)T +
1
2
[yok −H (x)]R−1

k [yok −H (x)]T

+
1
2
[mk − S (x)]M−1

k [mk − S (x)]T

I m is a vector quantity, whose elements are the domainwise (global)
integral of hydrometeors.

I S is operator which calculates the domainwise (global) integral for
each of the microphysical spieces,

Constraint on mass is up to accuracy Mk

Mk =
1

Nens − 1

Nens∑
i=1

[
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(
xb(i)k

)] [
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k − S
(
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)]T



Weakly Constrained LETKF

For mass:

xa,Mk = = xbk + Pa,M
k HTR−1

k

(
yok − ybk

)
+

1
Nens − 1

Xa,M
k

(
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k

)T
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k SXb
k

]−1

,

Note:

1 Corrections to weights implemented locally

2 After analysis ensemble is calculated correction to mass of each member



Weakly Constrained LETKF

For positivity:
I To avoid spurious convection (Aksoy et al., 2009) clear-air

reflectivity data are assimilated, i.e. non-negative threshold value is
set for very small reflectivities.

I Radar reflectivity data depend nonlinearly on hydrometeors. Further,
reflectivity data (including clear-air reflectivity data) are available at
radar observation locations, therefore not in every grid point of the
model

I By assimilating additional clear-air reflectivity data, we are asking in
the approximate weak sense that non-negativity is preserved in the
analysis of hydrometeors



Experimental setup

Idealized setup for radar DA

Zeng et al. 2021: Assimilating radar radial wind and reflectivity

data in an idealized setup of the COSMO-KENDA system,

Atmospheric Research, 249, 105282,

https://doi.org/10.1016/j.atmosres.2020.105282.

I COSMO model with a 2-km

horizontal resolution

I Efficient Modular VOlume

scanning RADar Operator

(EMVORADO, Zeng et al.,

2014, 2016)

I Both radial wind and

reflectivity data are

assimilated

I Ensemble size is 80

I Assimilated observations are

perturbation of nature run

with Gaussian noise with a

standard deviation of 5.0

dBZ and 1.0 m/s



Results: Impact of the different constraints

1 EControl Radar reflectivity and wind assimilated
2 EM With mass constraint
3 EP With positivity constraint (clear-air reflectivity data )
4 EMP Both constraint

If clear-air reflectivity data are assimilated, a threshold value of 5 dBZ is set, that is, all reflectivity values smaller
than 5 dBZ are set to 5 dBZ. If clear-air reflectivity data are not assimilated, all reflectivity values smaller than 5
dBZ are set to missing values.

Janjic, T. and Y. Zeng, 2021, Weakly constrained LETKF for estimation of hydrometeor variables in
convective-scale data assimilation, Geophysical Research Letters, 48, e2021GL094962,
https://doi.org/10.1029/2021GL094962.



Results: Impact of the different constraints

True storm plotted with blue
line. From upper left to lower right:
Econtrol ,EM ,EP ,EMP .

RMSEs calculated within storms
only (full) and for full domain (das-
hed).



Accuracy

Accuracy of short term forecasts.
FSS score through time (left) and in dependence of grid box (right).



Conclusion

I Data assimilation for geophysical models that resolve many scales of
motion and for observations of higher temporal and spatial density
would require that we re-evaluate and improve on the methodology.

I We propose inclusion of conservation laws and physical constraints
to tackle the difficult problem of convective scale data assimilation.

I By including mass and positivity, we improve on prediction of
convective events.

I Some methods proposed require only minor changes to the already
existing implementation.

I The inclusion of model error and observation error are still required.
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— Bright Future —



Bright future

Higher resolution models

From https://www.ecmwf.int/en/about/media-centre/

New data

Thomas et al. 2020,

Atmos. Meas. Tech.

New tools
I AI
I New uncertainty quantification

methods


