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Introduction: complex turbulent systems
Turbulent dynamical systems are characterized by a large dimensional phase space

and high degrees of internal instability (e.g., geoscience and plasma physics)

Challenges:

▶ multiscale with strong nonlinear

interactions

▶ nonlinear interactions with a

non-Gaussian equilibrium state

▶ understand and predict extreme events

Central math/science issues:

▶ quantifying uncertainty and model errors

▶ capture statistical variability to general

initial and external perturbations

▶ learning extreme dynamics from data

1E & Enguist, 2003; Majda & Wang, 2008; Needlin et al, 2011; Lucarini et al, 2020
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Outline

1 A reduced-order statistical model for general turbulent systems

2 Machine learning-based statistical closure model

3 Data-driven conditional Gaussian forecast and data assimilation
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General framework for turbulent systems

The system setup will be a finite-dimensional state u (t;ω) ∈ RN subject to

linear dynamics and an energy preserving nonlinear part

du

dt
= F [u (t;ω) ;ω] = (L+D)u+ B (u,u) + F (t) + σ (t) Ẇ (t;ω) (1)

▶ skew-symmetric L∗ = −L (e.g. rotation, dispersion etc.)

▶ negative definite D ≤ 0 (surface drag, viscosity, dissipations etc.)

▶ external forcing: deterministic F (t) (solar force, wind stress ...)

▶ unresolved effects: white noise σ (t) Ẇ (t;ω)

▶ energy-conserving quadratic form: u · B (u,u) ≡ 0
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Statistical ensemble forecast

▶ A probabilistic forecast of the model states is needed for tracking the

evolution of the PDFs

▶ Curse-of-dimensionality occurs in MC-type approaches, especially with

non-Gaussian higher-order statistics

▶ In practice, ensemble forecast via data assimilation is essential,

especially in the situation with partial observations

Important tasks:

▶ developing statistical

reduced order models

▶ efficient ensemble

forecast for PDFs

Introduction: Ensemble Forecast
I A probabilistic forecast of the model states utilizing a Monte Carlo (MC) type

approach, indicating possible future states by tracking the evolution of the
probability density function (PDF) constructed by the ensemble members.

I Computational challenge with the curse of dimensionality: an exponential
increase of the number of samples as the dimension of the system increases.
Thus, the higher order moments and the non-Gaussian fat-tailed PDFs in high
dimensions are very hard to be captured.

I In practice, the initialization of ensemble forecast via data assimilation is
essential, especially in the situation with only partial observations. Again, only a
small number of ensemble members is affordable.

(modified from ECMWF)

3 / 31
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Exact statistical moment equations

du

dt
= (L+D)u+ B (u,u) + F (t) + σ (t) Ẇ (t;ω)

Statistical dynamical equations for the mean and covariance

u (t) = ū (t) +
∑

Zi (t;ω) vi : ū = ⟨u⟩p Rij = ⟨ZiZ
∗
j ⟩p :'

&

$

%

dū

dt
= (L +D) ū + B (ū, ū) + RijB

(
vi, vj

)
+ F (t) ,

dR

dt
=Lv (ū)R + RL∗v (ū) +QF +

∑
k

v∗i σ
∗
k · σkvj.

dZk

dt
=
∑
m

Lv,km (ū)Zm + σ (t) Ẇ (t;ω) · vk

+
∑
m,n

(ZmZn − Rmn)B (vm, vn) · vk.

(2)
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Exact statistical moment equations

Statistical dynamical equations for the mean and covariance

u (t) = ū (t) +
∑

Zi (t;ω) vi : ū = ⟨u⟩p Rij = ⟨ZiZ
∗
j ⟩p�

�
�
�

dū

dt
= (L +D) ū + B (ū, ū) + RijB

(
vi, vj

)
+ F (t) ,

dR

dt
= Lv (ū)R + RL∗v (ū) +QF +

∑
k

v∗i σ
∗
k · σkvj.

(3)

▶ the linear operator Lv expressing energy transfers between the mean field and the
stochastic modes (B), dissipation (D), and non-normal dynamics (L)

{Lv (ū)}ij =
[
(L +D) vj + B

(
ū, vj

)
+ B

(
vj, ū

)]
· vi.

▶ the nonlinear flux operator QF for third-order moments expressing the energy flux due

to non-linear terms

QF,ij =
∑
m,n

⟨
ZmZnZj

⟩
B (vm, vn) · vi + ⟨ZmZnZi⟩B (vm, vn) · vj.
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Ideas for Reduced-Order Statistical Energy Closure
The reduced-order approximation uM ∈ RM, M ≪ N

dūM

dt
=(L +D) ūM + B (ūM, ūM) + RM,ijB (vi, vj) + F,

dRM

dt
=Lv (ūM)RM + RML

∗
v (ūM) +Q

M
F +Qσ.

A new systematic approach for the nonlinear flux QM
F combining both the detailed

model energy mechanism and control over model sensitivity

Q
M
F = Q

M,−
F +Q

M,+
F

▶ Model fidelity guarantees convergence to the unperturbed equilibrium

▶ Model sensitivity quantifies responses to general external
perturbations
▶ response operator independent of specific perturbations1

▶ relative entropy as the distance between two probability densities2

1Ruelle, Nonlinear, 2009; Leith, JAS, 1975
2Abramov, Majda, Kleeman, JAS, 2005
3Sapsis & Majda, PNAS, 2013; Qi & Majda, SIAM Review, 2018
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Flow in low-latitude regimes with zonal jets
Deterministic forcing through a perturbation in the background shear δU

▶ True statistics from a DNS code with 256× 256× 2 grid points
▶ In the reduced-order model, only modes |k| ≤ 10 are resolved, which is

about 0.15% of the full model resolution

6 Summary 26
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Fig. 5.6: Model responses in low/mid-latitude ocean regime with random forcing perturbation s2
0 = 0.2 (while no

stochastic forcing for the unperturbed case). The left panel shows the spectra for the barotropic and baroclinic
energy as well as the heat flux. Only first 10 modes are resolved in the reduced-order method. The right panel
is the time-series of the (resolved) total energy and heat flux. The truth is shown in black lines.

Like the previous case, the perturbation amplitude is large enough to generate strong nonlinear responses in the sta-
tistical energy in each mode. In the reduced-order model, only the modes with wavenumbers |k|  10 are calculated.
Thus the resolved subspace is 102 compared with the full dimensionality of the system of 2562 (⇠ 65000). Note from
the stability analysis in Table 2, the resolved spectrum is even smaller than the total number of unstable modes, that
is, there are also unresolved unstable modes that have positive growth rate. Again, the first step should make sure
the reduced methods keep the ability to reproduce the exact statistics in the unperturbed equilibrium, and get optimal
reduced-order model parameters in the training phase. The exactly same procedure as in Section 4.2.1 can be followed
and we neglect the detailed tuning regime results here.

In Figure 5.6 and 5.7, we compare the model responses in both low/mid-latitude ocean and atmosphere regimes.
In this inhomogeneous regime with anisotropic jets, the statistical variables combine the responses in the mean and
variance, p⇤1,k p2,k = p̄⇤1,k p̄2,k + p0⇤1,k p02,k, to display the total effect from the perturbation. In the ocean regime, we
use the unperturbed case with no random forcing, and the perturbed is added with white noise variance s2

0 = 0.2.
The dominant mode with largest sensitivity is at wavenumber |k| = 6 due to the zonal jet structure. The sensitivity
is captured with accuracy in the reduced-order method. Also we compare the time evolvement of the total resolved
energy and heat flux. The prediction is also good with small error. In the atmosphere regime, the unperturbed case
is with random forcing s2

0 = 0.2 and the perturbation is added with s2
0 = 0.4. The first mode k = (0,1) has a large

mean state representing the zonal mean flow. Thus |k|= 1 mode gets the largest statistical energy and is most sensitive
to perturbations. One important feature is the large change in the heat flux in the first two modes, representing the
exchange of energy in the dominant barotropic and baroclinic mode. Still the responses can be captured with accuracy
in each mode in the spectra as well as the total energy and heat flux profile with only 102 modes resolved. Note that in
both cases, the heat flux is weak due to the blocking effect from strong zonal jets.

6 Summary

In this paper, we discuss the development of efficient low-dimensional reduced-order models for the two-layer quasi-
geostrophic turbulence to capture statistical responses to external perturbations in various dynamical regimes. The
computational cost is reduced through a systematic approximation about the expensive nonlinear higher-order interac-
tions following the generic framework developed in [19, 22]. Additional damping and noise corrections are proposed
to replace the third-order moments, and the model errors are calibrated through an information-theoretic framework
using information theory as in [17]. Two successive steps are then carried out in the algorithm concerning model
consistency in unperturbed equilibrium and sensitivity to external perturbations. Noted that imperfect models with sta-
tistical equilibrium fidelity still suffer inherent information barrier in model sensitivity to perturbations, linear response
operators involving only unperturbed equilibrium statistics are proposed to fit the model parameters in a training phase
to achieve optimal model prediction skill. The imperfect model sensitivity is further improved using the total statistical
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Fig. 5.7: Model responses in low/mid-latitude atmosphere regime with random forcing perturbation s2
0 = 0.4 (while

stochastic forcing s2
0 = 0.2 for the unperturbed case). The first mode k = (0,1) has a large mean state

representing the zonal mean flow. The left panel shows the spectra for the barotropic and baroclinic energy
as well as the heat flux. Only first 10 modes are resolved in the reduced-order method. The right panel is the
time-series of the (resolved) total energy and heat flux. The truth is shown in dashed black lines.

energy equation[16] for the two-layer baroclinic flow. The total statistical energy characterizes the entire energy struc-
ture in the system according to specific external perturbations despite the inhomogeneity, and introduces one global
scaling factor that offers more detailed model calibration for the unresolved higher-order interactions. The additional
computational cost only requires solving one additional scalar dynamical equation.

The feasibility of the reduced-order models is tested on various dynamical regimes in the two-layer QG system
in response to both stochastic and deterministic perturbations. Distinct statistical structures can be generated as the
model parameters change. Homogeneous statistics with zero mean state can be observed in the high-latitude regime,
while anisotropic jets become representative in the low/mid-latitude regime [6, 20, 27]. Also atmosphere regime shows
more large-scale structures and ocean regime contains more small-scale eddies in the vorticity field. These dynamical
regimes offer desirable testbeds for testing the robustness of the reduced-order model skill in treating different types
of statistical features. To simulate the various external effects that drive the atmosphere/ocean flow, the forcing per-
turbation is decomposed into the barotropic and baroclinic component. The reduced-order method is organized in the
uniform framework for predicting all the dynamical regimes with different kinds of external forcing and perturbation.
High prediction skill is displayed in the reduced-order model among the various test regimes in capturing model re-
sponses in principal modes with only about 0.15% of the full resolution modes calculated explicitly. In contrast, FDT
performs well in the linear regime with small perturbation amplitude, but loses its skill as stronger nonlinearity takes
place in the model [11, 5].

Finally, the systematic approach we develop in this paper shows potential to be applied to more realistic climate
models. Also, passive tracer advected by the geophysical turbulent flow contains a number of attractive features and is
worth investigating under this framework. It is worthwhile to pursue similar analysis and application of the reduced-
order models about turbulent tracer advection in the geophysical flow.
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Figure: ocean regime (left) and atmosphere regime (right)
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Machine learning strategies for higher order statistics

Accurate prediction of key

statistics in turbulent systems

remains a challenging problem

▶ non-Gaussian statistical states

▶ interaction among a wide

spectrum of scales

▶ curse of dimensionality

Machine learning strategies have

been extensively applied to problems

involving big data

▶ compositions of simple functions

▶ successful for learning dynamics

▶ data-driven predictions of turbulent

systems

A machine learning strategy for high order responses in statistical closure

models

▶ neural network is used to learn the nonlinear dynamics directly from data

▶ unresolved nonlinear flux in different scales are modeled automatically

▶ the method requires robust performance with internal instability

1Ma, Wang, E, 2018; Levine, Stuart, 2021
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Non-Markovian model with neural network

full moment equations

˙̄u = (L+D) ū + B (ū, ū) + ϕ+ F
Ṙ = Lv (ū)R+ RL∗v (ū) + θ

ϕ= RijB (vi, vj) , θij = ⟨ZmZnZj⟩B (vm, vn) · vi + c.c.

Using a hidden non-Markovian model that maps the delay coordinates of

variables ū, R to nonlinear coupling ϕ, θ in a low-dimensional subspace

discrete low-order closure

ūi+1 = F1 (ūi, Ri,Fi+1, ϕi) , Ri+1 = F2 (ūi, Ri, θi)

ϕi+1 = Gϕ (ūi−m:i, Ri−m:i, ϕi−m:i)

θi+1 = Gθ (ūi−m:i, Ri−m:i, θi−m:i)

Challenge: how to effectively learn the (nonlinear) structures in Gϕ,Gθ

from data?
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Connection to Mori-Zwanzig formalism

Suppose the memory length m (< i) the delay embedding theorem holds

▶ The full dynamics as coupled resolved-unresolved processes

ui+1 = F (ui, θi) ,

θi+1 = G (ui, θi) := E (Θi+1 | ui−m:i, θi−m:i).

▶ The approximation model to delay embedded map

ûi+1 = F
(

ûi, θ̂i

)
, θ̂i+1 = Eϵ (Θi+1 | ui−m:i, θi−m:i) + ξ̂i+1,

where Eϵ is the estimator with variance of order ϵ2 and ξ̂ a noise.

▶ For the same initial condition, there is the error estimate

E
(

max
i∈[0,··· ,T ]

|ûi − ui|

)
= O

(
aTϵ

)
,

where a > 1 is a constant that is independent of T and ϵ.
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Training and prediction for turbulent systems

Basic idea:

▶ training stage: small training data from unperturbed equilibrium: i)

constant initial value; ii) constant external forcing

▶ prediction stage: different initial & inhomogeneous perturbations

beyond the training dataset among different perturbation scenarios

Neural network should maintain numerically stable to cope with the

inherent instability persistent in the turbulent model.

Question: what is the skill in the optimized neural network to predict the

highly nonlinear statistical responses using limited data set?

1Qi, Harlim, Philos. Trans. R. Soc. A, 2021
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Architecture of the deep neural network
Long-Short-Term-Memory (LSTM) as a special recurrent neural network
▶ LSTM chain connected by m sequential cells

hm = Lc(m) {h0; xi−m+1, · · · , xi} ≡ Lc (xi) ◦ · · · ◦ Lc (xi−m+1) (h0)

▶ a fully connected final layer

ŷi+1 = Ahm + b
▶ loss function from relative entropy

P
(
π, πM

)
=

∫
π ln

(
π/πM

)
=
1

2
(ūt − ūm)

T
R−1

m (ūt − ūm)

+
1

2

[
tr
(
RtR

−1
m

)
− log det

(
RtR

−1
m

)
−N

]
.

Figure 2: Left: the basic computational flow of a LSTM recurrence. + and
N

are element-wise addition
and multiplication respectively. Right: a sequence of LSTM cells applied compositionally.

3 Deep Learning via Long-Short-Term-Memory

As a nonlinear type parametric regression method, deep learning outperforms kernel methods including
the RKHS approach in terms of generalization error when the target functions are su�ciently smooth [18].
Though it is theoretically unclear whether there are any advantages of using deep learning over other non-
parametric regression methods for general continuous functions in terms of overcoming the curse of di-
mension [5, 51, 53, 52], deep learning has practical advantages over the RKHS approaches. A significant
challenge with the RKHS approximation in (10) is that there is no a priori guideline for choosing the appro-
priate hypothesis space. If the orthogonal basis is used, it is practically di�cult to even construct these basis
functions on very high-dimensional variables z 2 Z. On the other hand, if arbitrary radial functions are used
as a basis, the evaluation of the resulting model on a new point z requires evaluating the basis functions on
kz �zt,mk for all training data t = 1, . . . ,N, predicting with (3) becomes too costly since we need to evaluate
the conditional expectation in (10) on a new point in each iteration. In contrast, deep learning as a nonlinear
parametric regression method is not hampered by these issues, since it is practically just a nonlinear inter-
polation technique using a composition of nonlinear activation functions and linear transforms. Of course,
the main issue with nonlinear regression is whether one can obtain the minimum on such a non-convex op-
timization problem in the training phase. Recent advances in optimization theory show that simple gradient
descent can identify a local minimizer with an arbitrarily small loss and a generalization error without the
curse of dimensionality when the network size is su�ciently large for classification problems [9]. Though
there is no existing optimization theory that guarantees good local minimizers in general settings, motivated
by many positive numerical results shown in other closure modeling approaches [70, 50], we will consider
realizing the closure model in (3) using recurrent neural networks.

As a special case of recurrent neural networks, Long-Short-Term-Memory (LSTM) is capable of learn-
ing multi-scale temporal e↵ects and hence is adopted in our method. The computational flow of the LSTM
consists of a sequence of computational cells, each of which is

ft = � � NN(ht�1, zt; W f ), it = � � NN(ht�1, zt,Wt)
ot = � � NN(ht�1, zt; Wo), C̃t = tanh(NN(ht�1, zt; WT )),
Ct = ft ⌦Ct�1 + it ⌦ C̃t, ht = ot ⌦ tanh(Ct),

where� denotes the sigmoid function, ⌦ is the pointwise product, and NN denotes a fully connected network
which stacks layers of linear transformation and nonlinear activation function. See Fig. 2 (left) for an
illustration of an LSTM cell. For simplicity, let us denote the above flow as (ht,Ct) = P(zt, ht�1,Ct�1; W)
with parameters W, inputs (zt, ht�1,Ct�1), and outputs (ht,Ct). LSTM cells can be applied compositionally
and we denote the LSTM sequence with m + 1 cells as (hm+1,Cm+1) = Pm({zt}m+1

t=1 , h0,C0; W) (see Fig. 2
(right) for an illustration).

Now let us apply the LSTM to approximate the closure model in (3) with the given training data {zt,m, ✓t},
where zt,m := (xt�m:t,✓t�m:t) 2 Z. We train an (m + 1)-cell LSTM (hm+1,Cm+1) = Pm(zt,m, h0,C0; W) with

11
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Example: Lorenz 96 system

The Lorenz 96 model mimics the large-scale

behavior around a mid-latitude atmosphere

circle

duj

dt
= uj−1 (uj+1 − uj−2) − duj + F.
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Model performance in the L-96 system
Machine learning prediction with a much larger integration step ∆t = 10dt
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Additional issues with inhomogeneous statistics

Limitation in using the data-driven statistical models involving highly

turbulent signals:

▶ Additional constraints in statistical moments:
▶ positive-definite covariance, inhomogeneous higher moments

▶ Strong inherent instability among a wide range of fluctuation modes:
▶ amplification of small errors, numerical instability

▶ Efficient ensemble simulations for data assimilation and filtering

Idea: modeling uncertainty from a hybrid statistical-stochastic

formulation3

▶ Key leading order moments in explicit statistical dynamics

▶ High order fluctuation feedbacks from efficient stochastic closure

model

3Qi & Harlim, JCP, 2023
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A coupled statistical-stochastic model

The statistical-stochastic model can naturally estimate inhomogeneous
statistics and positive-definite covariance estimation

dū
dt

=(L +D) ū + B (ū, ū) +
∑
i,j

(
1

M − 1

M∑
i=1

Z
(i)
k Z

(i)∗
l

)
B (ei, ej) + F,

dZ
(i)
i

dt
=
∑
j

Lij (ū)Zj +
∑
m,n

γimn

(
Z
(i)
m Z

(i)∗
n

)
+ σ (t) Ẇ(i) (t;ω) · ei.

The fluctuation equation has the equivalent covariance dynamics

dR

dt
= L (ū)R + RL

∗ (ū) +QF +Qσ,

with mean-fluctuation decomposition and ensemble approximation

u = ū + u′ (t;ω) = ū +

N∑
i=1

Zi (t;ω) ei, R = ⟨ZZ∗⟩ ∼ 1

M − 1

M∑
i=1

Z(i)Z(i)∗
.
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Overfitting in direct training of stochastic processes
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Figure: Trajectory prediction of stochastic coefficients Zk in leading modes
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Figure 3.1: The time evolution of the quasilinear growth rate computed for each spectral mode k of the L-96 model. Di↵erent lines are

subject to the initial perturbations described in Section 4.1.

3.2. Hybrid statistical-stochastic model for homogeneous statistics

We start with the simple model set up with homogeneous damping and forcing, dj := �, fj := f , in (3.2) together

with homogeneous initial perturbations u0,j := u0. In this case, the mean and fluctuation equations in (3.3) and

(3.4) can be simplified as

dū

dt
= ��ū+

X

k

hZkZ
⇤
ki �k + f, (3.6a)

dZk

dt
= � (� + �kū)Zk +

X

m 6=0

ZmZk�m�
⇤
me

i2⇡�k
N , (3.6b)

with �k = e
�i 4⇡k

N � e
i 2⇡k

N , ū = û0, d̄ = �, and Rk := Rkk = hZkZ
⇤
ki denotes the variance of the stochastic coe�cient

Ẑk (t;!). Under the homogeneous statistics, the statistical mean state becomes a scalar and the covariance matrix

becomes diagonal, that is,

ūj = ū = û0, ûk := 0 k 6= 0, and Rkl = Rk�kl.

Thus we do not need to consider the inhomogeneous mean equation (3.3b) involving ûk and the cross-correlations

between di↵erent spectral mode hZkZ
⇤
l i , k 6= l. On the other hand, nonlinear dynamics and non-Gaussian statistics210

still play a central role due to the strongly coupled feedbacks in equations (3.6). Di↵erent scales are mixed in

the feedbacks with summations over all the wavenumbers. In particular, the system may contain strong internal

instability through the mean-fluctuation interactions. For example, in (3.3b) strong positive growth rate will be

induced when û0 = ū > 0 for modes with Re�k < 0. To illustrate this, we plot in Figure 3.1 the quasilinear growth

rate � (� + �kū) of each spectral mode in the L-96 model, subject to di↵erent initial perturbations (that we will215

describe in Section 4.1). Positive value implies instability of the mode. We notice that the instabilities occur on

a wide range of modes depending on the external perturbations, occur intermittently, and thus, create a practical

challenge for learning a numerically stable and accurate model.

12

Figure: Lyapunov exponents computed for each spectral mode k of the L96 model
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A stabilized reduced order closure
A low-dimensional representation in mean and fluctuation

uM = ūM +
∑
i∈I

Ziei, |I | ≪ N.

▶ mean equation in low-dimensional resolved subspace

dūM

dt
= (L+D) ūM +

∑
i,j∈I

RM
ij B (ei, ej) + F +Θm

▶ a reduced order fluctuation equation

dZM

dt
= L

(
ūM

)
ZM + σ (t) Ẇ (t;ω) · ei +Θv

Decomposition of effective damping and noise

QF,k ≈ Θv = −DMZM + ΣMẆ.

Equivalently, this gives

QF ≈ −DMRM + RMDM∗ + ΣΣ∗.
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Training and prediction results
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Physics-informed data-driven conditional Gaussian
algorithm with partial observation

Goals:

▶ Efficiently and accurately forecasting key non-Gaussian PDF for a

wide class of high-dimensional complex systems using only a small

number of ensemble samples.

▶ Providing a systematic framework of developing hybrid

dynamical-statistical reduced order models for complex systems with

very large dimensions when the primary interest lies in the statistical

forecast of certain large-scale modes.
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Ensemble forecast with conditional Gaussian Model

▶ Ensemble prediction with the conditional Gaussian framework1

dX

dt
= [A0 (X, t) +A1 (X, t) Y] + B1 (X, t) Ẇ1,

dY

dt
= [a0 (X, t) + a1 (X, t) Y] + b1 (X, t) Ẇ2,

with

p (X, Y) ∼
1

J

J∑
j=1

p
(
X
(j)
)
N
(
µY

(
X
(j)
)
, RY

(
X
(j)
))

.

▶ Learning unresolved processes in the conditional Gaussian equations2

dµ

dt
=(a0 + a1µ) + (RA∗

1) (B1B
∗
1)

−1
(
Ẋ− (A0 +A1µ)

)
,

dR

dt
=a1R+Aa∗

1 + b2b
∗
2 − (RA∗

1) (B1B
∗
1)

−1
(A1R) .

1Chen & Majda, 2017
2Chen & Qi, 2023
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▶ Ensemble prediction with the conditional Gaussian framework1

dX

dt
= [A0 (X, t) +A1 (X, t) Y] + B1 (X, t) Ẇ1,

dY

dt
= [a0 (X, t) + a1 (X, t) Y] + b1 (X, t) Ẇ2,

with

p (X, Y) ∼
1

J

J∑
j=1

p
(
X
(j)
)
N
(
µY

(
X
(j)
)
, RY

(
X
(j)
))

.

▶ Learning unresolved processes in the conditional Gaussian equations2

dµ

dt
=(a0 + a1µ) + FY (B1B

∗
1)

−1 GY ,

dR

dt
=a1R+Aa∗

1 + b2b
∗
2 − FY (B1B

∗
1)

−1 FY .

1Chen & Majda, 2017
2Chen & Qi, 2023
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General ideas
General Idea.

(for k = 1, ... ,K)
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Prediction of marginal PDFs in turbulent transport
∂q

∂t
+ u · ∇q = D (∆)q+ F,

∂T

∂t
+ u · ∇T = −dTT + κ∆T.

▶ Direct MC simulation: sample N = 5× 104, time step ∆t = 1× 10−3;
▶ Data-driven CG model: sample N = 100, time step ∆t = 0.01.
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Figure D.12: Prediction of the marginal PDFs and joint PDFs in the non-Gaussian regime at lead time t = 0.5.
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Figure D.13: Prediction of the marginal PDFs and joint PDFs in the non-Gaussian regime at lead time t = 1.5.
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Summary

▶ Prediction for higher order statistics becomes an important issue in

strongly non-Gaussian regimes.

▶ Data-driven methods provide useful tool to effectively improve

prediction skill and learn unresolved turbulent structures.

▶ The framework is also useful for stochastic modeling strategies

combining ideas in statistical closure model, data assimilation, and

conditional statistics ensemble.
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