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Introduction: complex turbulent systems

Turbulent dynamical systems are characterized by a large dimensional phase space
and high degrees of internal instability (e.g., geoscience and plasma physics)

Challenges:

» multiscale with strong nonlinear
interactions

» nonlinear interactions with a
non-Gaussian equilibrium state

» understand and predict extreme events

Central math/science issues:
» quantifying uncertainty and model errors

» capture statistical variability to general
initial and external perturbations

» learning extreme dynamics from data

LE & Enguist, 2003; Majda & Wang, 2008; Needlin et al, 2011; Lucarini et al, 2020
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Outline

@ A reduced-order statistical model for general turbulent systems

@ Machine learning-based statistical closure model

@ Data-driven conditional Gaussian forecast and data assimilation
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General framework for turbulent systems

The system setup will be a finite-dimensional state u (t;w) € RN subject to
linear dynamics and an energy preserving nonlinear part

du .
3t =Fhutw);w]=(L+D)u+B(uyu)+F{t)+o(t)W(tw) (1)
skew-symmetric L* = —L (e.g. rotation, dispersion etc.)

negative definite D < 0 (surface drag, viscosity, dissipations etc.)

external forcing: deterministic F (t) (solar force, wind stress ...)

unresolved effects: white noise o (t) W (t; w)

vVvyvVvyyVvyywy

energy-conserving quadratic form: u - B (u,u) =0
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Statistical ensemble forecast

> A probabilistic forecast of the model states is needed for tracking the
evolution of the PDFs

> Curse-of-dimensionality occurs in MC-type approaches, especially with
non-Gaussian higher-order statistics

» In practice, ensemble forecast via data assimilation is essential,
especially in the situation with partial observations

Important tasks:
» developing statistical
reduced order models

> efficient ensemble < .
forecast for PDFs o

Initial condition Forecast time Forecast
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Exact statistical moment equations

du

o =(L+D)u+Bu,u)+F(t)+ot)W(tw)

Statistical dynamical equations for the mean and covariance

u(t)=u(t)+) Zi(tw)vi: w=(u), Ry=(ZZ),:
dii _ _
n =(L+D)u+B(w,a)+RyB (vi,vj) +F (1),
dr _ .
E:Lv(u)RJrRL i +QF+%V Toh - owv;.
dzy 2)

o Zkam )Zm + 0 () W (tw) - vie

+ Z (ZmZn —Rmn) B (v, vn) - vk.

m,mn
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Exact statistical moment equations

Statistical dynamical equations for the mean and covariance

u(t)=u(t)+) Zi(w)vi: u=(w), Ry=(ZZ]),
O = (L4 D) &+ B (3, 8) +RyyB (vi, ) +F (1),
dR * (= * % (3)
I =L, (u )R+RLv(u)+QF+%vick~0kvj.

P the linear operator L, expressing energy transfers between the mean field and the
stochastic modes (B), dissipation (D), and non-normal dynamics (L)

{Ly (@)} = [(L+D)v; + B (&, v;) + B (v, )] - wi.

P the nonlinear flux operator Qf for third-order moments expressing the energy flux due
to non-linear terms

Qry = Z <Zmznzj> B (Vin,Vn) - Vi + (ZmZnZi) B (Vm,Vn) - Vj.

m,n
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Ideas for Reduced-Order Statistical Energy Closure

The reduced-order approximation up € RM, M <« N

i
% =(L+ D) im + B (iim, im) + RvB (vi, vi) + F,
dr .

d:/l :Lv (ﬁM)RM+RMLv (uM)+QIT:\A+QG-

A new systematic approach for the nonlinear flux Q]’E"l combining both the detailed
model energy mechanism and control over model sensitivity

QF = Qf + Q"

> Model fidelity guarantees convergence to the unperturbed equilibrium

> Model sensitivity quantifies responses to general external
perturbations

> response operator independent of specific perturbations®
> relative entropy as the distance between two probability densities?

1Ruelle, Nonlinear, 2009; Leith, JAS, 1975
2 Abramov, Majda, Kleeman, JAS, 2005
3Sapsis & Majda, PNAS, 2013; Qi & Majda, SIAM Review, 2018



Flow in low-latitude regimes with zonal jets
Deterministic forcing through a perturbation in the background shear dU
> True statistics from a DNS code with 256 x 256 x 2 grid points
» In the reduced-order model, only modes |k| < 10 are resolved, which is
about 0.15% of the full model resolution

. zonal averaged flow field, low/mid-lat ocean

20 © 10 120 140 160
zonal averaged flow field, low/mid-lat atmosphere

100 200 300 400 500 600 700
time

B barotropic energy total barotropic energy barotropic energy

— 5
| — model /7

20

5 10 5 10 15 20 25 5 10
baroclinic energy total baroclinic energy baroclinic energy

5 1 2
. )
: AJ/\a\__ s A !
2 0
o sl 5 w0 15w % w 5 o s % NG 200
«10% heat flux total heat flux heat flux total heat flux
5 6 0.01 3
DW’_{ 4’7 1 DV—+ 2
5 2 o001 !
o s o sk 5 w0 15w s w0 % 5 T s o s 10 1o o
wavenumber time. ‘wavenumber time

Di Qi (Purdue) Reduced Statistical Models and ML for UQ Mar. 21, 2023 9/26



Machine learning strategies for higher order statistics

Accurate prediction of key Machine learning strategies have
statistics in turbulent systems been extensively applied to problems
remains a challenging problem involving big data
» non-Gaussian statistical states » compositions of simple functions
» interaction among a wide » successful for learning dynamics
spectrum of scales » data-driven predictions of turbulent
» curse of dimensionality ) systems )

A machine learning strategy for high order responses in statistical closure

models
» neural network is used to learn the nonlinear dynamics directly from data
» unresolved nonlinear flux in different scales are modeled automatically

» the method requires robust performance with internal instability

1 Ma, Wang, E, 2018; Levine, Stuart, 2021
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Non-Markovian model with neural network

full moment equations
i=(L+D)u+B(wu)+¢+F
R=1L, (a)R+RL! (@) +0
d): RIJB (Via VJ) ) eL] - <ZmZnZJ> B (Vm,Vn) Vi + C.C.

Using a hidden non-Markovian model that maps the delay coordinates of
variables 1, R to nonlinear coupling ¢, 0 in a low-dimensional subspace

discrete low-order closure
U1 = F1 (Ui, Riy Figr, di), Rig1 = F2 (W, Ry, 641)
¢it1 = G¢ (Gi—mi, Rimm:i, Pi—m:i)

0i+1 = Go (Ti—m-iy Ri—m:i, Oi—m:i)

Challenge: how to effectively learn the (nonlinear) structures in G, Go
from data?
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Connection to Mori-Zwanzig formalism

Suppose the memory length m (< i) the delay embedding theorem holds

» The full dynamics as coupled resolved-unresolved processes

i1 = F(ug, 04),
Biv1 =G (ui,0:) =E (Oi11 | ui—m:i, Oimmii).

» The approximation model to delay embedded map
Ui =F (ﬁi) éi) y 01 =E€ (@i | uimmity Ormit) + &1,

where E€ is the estimator with variance of order €2 and ¢ a noise.

» For the same initial condition, there is the error estimate

E ( max |0y — ui> =0 (aTe) ,
i€[0,---,T]

where a > 1 is a constant that is independent of T and €.

Di Qi (Purdue) Reduced Statistical Models and ML for UQ Mar. 21, 2023 12/26



Training and prediction for turbulent systems

Basic idea:

» training stage: small training data from unperturbed equilibrium: i)
constant initial value; ii) constant external forcing

» prediction stage: different initial & inhomogeneous perturbations
beyond the training dataset among different perturbation scenarios
Neural network should maintain numerically stable to cope with the
inherent instability persistent in the turbulent model.

Question: what is the skill in the optimized neural network to predict the
highly nonlinear statistical responses using limited data set?

10Qi, Harlim, Philos. Trans. R. Soc. A, 2021
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Architecture of the deep neural network
Long-Short-Term-Memory (LSTM) as a special recurrent neural network

» LSTM chain connected by m sequential cells

him = Lel™ {ho;ximo1, -

» a fully connected final layer

Vir1 =Ahyn +b

» loss function from relative entropy

P (n,7™M) = JT[ID (me/m™) :12 (fig — @) ' R

+ % [tr (ReR,') — logdet (ReR,,') — NJ.

N

yXi} = Le(xi) o -+ o Le (xi—m41) (ho)

(U — Um)
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Example: Lorenz 96 system

The Lorenz 96 model mimics the large-scale
behavior around a mid-latitude atmosphere

circle
duy
)
— = Uj1 (uj+1 —uj,z) — du,- + F.
dt
equilibrium energy spectra with constant forcing forcing perturbations for the numerical tests
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Model performance in the L-96 system

Machine learning prediction with a much larger integration step At = 10dt

model p with the original reduced-order model
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Additional issues with inhomogeneous statistics

Limitation in using the data-driven statistical models involving highly
turbulent signals:

» Additional constraints in statistical moments:
> positive-definite covariance, inhomogeneous higher moments
» Strong inherent instability among a wide range of fluctuation modes:

» amplification of small errors, numerical instability

» Efficient ensemble simulations for data assimilation and filtering

ldea: modeling uncertainty from a hybrid statistical-stochastic
formulation?®

» Key leading order moments in explicit statistical dynamics

» High order fluctuation feedbacks from efficient stochastic closure
model

3Qi & Harlim, JCE 2023
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A coupled statistical-stochastic model

The statistical-stochastic model can naturally estimate inhomogeneous
statistics and positive-definite covariance estimation

M
da - 1 i i)*
i =(L+D)u+B(u,u)+ E (Nl—‘l E Z]&)Z{) >B(ei,ej)+Fv
) i=1
dZ“)

=S L@z +Zym( Wz ) +o W () e

The fluctuation equation has the equivalent covariance dynamics

dR

EZL(ﬁ)R‘FRL*(ﬁ)“‘QF“‘QU)

with mean-fluctuation decomposition and ensemble approximation

N M
o _ . . 1 W)r(1)
u=u+u(t,w)zu—f—é]zi(t,w)ei, R:(ZZ)~M_1E 77
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Overfitting in direct training of stochastic processes

prediction of stochastic coefficients Z (training data) prediction of stochastic coefficients Zy (prediction data)
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Figure: Lyapunov exponents computed for each spectral mode k of the L96 model
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A stabilized reduced order closure
A low-dimensional representation in mean and fluctuation

M =M + Z Ziey, |Z| < N.
i€z
» mean equation in low-dimensional resolved subspace
daM
dt

=(L+D)iM+ > RMB(ei,e) +F +O™
i,jez
» areduced order fluctuation equation
dzM
dt
Decomposition of effective damping and noise

=LEM)ZM + o () W (w) - ey + O

Qrx = ©®¥ = —DMZM 1 sMw,
Equivalently, this gives
Qr ~ —DMRM 4 RMDM* 4 55,
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Training and prediction results

MSEs for long time prediction of statistical inhomogeneous mean & total variance
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time

(a) prediction MSEs in different test cases
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Physics-informed data-driven conditional Gaussian
algorithm with partial observation

Goals:

» Efficiently and accurately forecasting key non-Gaussian PDF for a
wide class of high-dimensional complex systems using only a small
number of ensemble samples.

» Providing a systematic framework of developing hybrid
dynamical-statistical reduced order models for complex systems with
very large dimensions when the primary interest lies in the statistical
forecast of certain large-scale modes.

Di Qi (Purdue) Reduced Statistical Models and ML for UQ Mar. 21, 2023 22/26



Ensemble forecast with conditional Gaussian Model
» Ensemble prediction with the conditional Gaussian framework?

dX .
T [Ao (X,t) + A7 (X, 1) YI+B1 (X, 1) Wh,

dy .
a =[ag (X,t) 4+ a7 (X, 1) Y] + by (X, 1) W3,

with |
p(X,Y)~ };p (XtiJ)N (uv (X(i)) Ry (X(“)) )

> Learning unresolved processes in the conditional Gaussian equations?

d * *\— y
& =(ao+ar) + (RA}) (B1B}) ' (X— (Ao + A1),
drR _
a:a1R+AaT+b2b§—(RAT)(B1BT) T(AIR).

1Chen & Majda, 2017
2Chen & Qi, 2023
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Ensemble forecast with conditional Gaussian Model
» Ensemble prediction with the conditional Gaussian framework?

dX .
T [Ao (X,t) + A7 (X, 1) YI+B1 (X, 1) Wh,

dy .
a =[ag (X,t) 4+ a7 (X, 1) Y] + by (X, 1) W3,

with

p(X,Y)~ }jip (XtiJ)N (uv (X(i)) Ry (X(“)) )

> Learning unresolved processes in the conditional Gaussian equations?

d L
d_t: =(ao + arp) + Fy (B1B}) ' Gy,

dR * * x\—1
a:a‘lR"_Aa]"‘bzbz—fY(B]B]) fY.

1Chen & Majda, 2017
2Chen & Qi, 2023
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General ideas

Traditional MC
v

0 05 1

PIDD-CG Algorithm

MC in a Low-Dim
Subspace

Conditional Gaussian
Mixture with Optimized
Mean and Covariance
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General ideas

Traditional MC
v

0 05 1

MC in a Low-Dim
Subspace

=)

05 1

Conditional Gaussian
Mixture with Optimized
Mean and Covariance
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Overview of the PIDD-CG Ensemble Forecast Algorithm for Turbulent Systems with

Partial Observations
Step1. Phase Space Decomposition

¥ N&g $ Low-Dimensional Subspace: Kernel Density Estimation (KDE) in Step 2

High-Dimensional Subspace: PIDD-CG Algorithm in Steps 3-5

Step2.  Systematic Multiscale Statistical Closure Approximation

of the Dynamics in the Low-Dimensional Subspace
|‘ Ny Ri)
-

Cheap Forecast
Monte Carlo + KDE

Nz, Re)

FinalTime.

Effective Physics-Informed Cond
EEpEs Mixture via Data Ass

al Gaussian
ion

Conditional Gaussian
Statistics as Ensemble
Members

Nty Ra)

Target PDF

e
’

Closed Analytic Formulae.

‘ Npge. Rie)

Step 4. I

d
Conditional Statistics "1 =Basic Dynamics + § Complicated Nonlinear Interactions § (for k=1, ... K)

Step 5. Effective Approximation Utilizin
Recurrent Neural Network

a@n” = [pit

p(x)
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Prediction of marginal PDFs in turbulent transport
9q T _
5 Sp VT = —drT 4 kAT

P Direct MC simulation: sample N =5 x 10, time step At =1 x 1073;
» Data-driven CG model: sample N = 100, time step At = 0.01.

+u-Vq=D(A)q+F
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Summary

» Prediction for higher order statistics becomes an important issue in
strongly non-Gaussian regimes.

» Data-driven methods provide useful tool to effectively improve
prediction skill and learn unresolved turbulent structures.

» The framework is also useful for stochastic modeling strategies
combining ideas in statistical closure model, data assimilation, and
conditional statistics ensemble.

Reference:

» Qi & Majda, Using machine learning to predict extreme events in complex systems,
PNAS, 2020.

» Qi & Harlim, Machine learning-based statistical closure of turbulent dynamical systems,
Philos. Trans. R. Soc. A, 2022.

P Qi & Harlim, A data-driven statistical-stochastic model for effective ensemble forecast of
complex turbulent systems, JCP, 2023.

» Chen & Qi, A physics-informed data-driven algorithm for ensemble forecast of complex
turbulent systems, preprint, 2023.
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