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Motivation

Motivation

Quantum computational complexity estimates the difficulty of constructing
quantum states from elementary operations, a problem of prime importance
for quantum computation.

It can also serve to study a completely different physical problem - that of
information processing inside black holes.

Extends the connection between geometry and information.
Growth of complexity is equal to the growth of black hole interiors.
[Susskind et al., (2014)]

It would be intriguing to investigate what characteristics complexity shows in
other natural processes of evolution.

Neutrinos have shown features such as entanglement and nonlocal
correlations that proves their efficiency to perform QIP tasks.
[blasone et al., (2009)], [Formaggio et al., (2016)]

It gives us motivation to see how complex is an evolution of neutrino system
and if complexity can also probe any open issue in the neutrino sector.

Khushboo Dixit (CAPP, University of Johannesburg) 2 / 27



Neutrino Oscillation

Neutrino-properties

Postulated first by Wolfgang Pauli to explain how beta decay could conserve
energy, momentum and angular momentum(spin)

n → p + e− + ν̄e

Spin half, very small mass, no electric charge

Come in three flavours → νe , νµ, ντ

Interact only via weak interaction

Neutrinos → Left-handed, Anti-neutrinos → Right-handed
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Neutrino Oscillation

Neutrino Oscillations

About 65 billion ( 6.5× 1010) neutrinos coming from Sun’s interior pass
through 1 square centimeter per second. Homestake experiment’s observed
value was 1/3 of the predicted flux. This lead Pontecorvo to suggest neutrino
oscillations.

Up-down asymmetry of atmospheric muon neutrino flux by IMB and
KamioKande experiments gave additional hint of neutrino oscillations.
(T. Kajita (SK), A. McDonald (SNO), 2015)

Experiments : Solar (e.g. Homestake, Gallex/SAGE, SNO), Atmospheric
(e.g. Super Kamiokande), Reactor (e.g. CHOOZ, KamLAND, Daya-Bay,
RENO), Accelerator (e.g. T2K, MINOS, NOνA, DUNE (upcoming))
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Neutrino Oscillation

Quantum mechanics in neutrino oscillations

The three flavor states (eigenstates of weak interaction, which are detectable in lab)
of neutrinos, νe , νµ and ντ mix via a 3× 3 unitary matrix to form the three mass
eigenstates (which are the propagation eigenstates) ν1, ν2 and ν3. Neutrino
oscillations occur only if the three corresponding masses, m1,m2 and m3, are
non-degenerate.

In three flavor neutrino oscillation
Propagation states → {|ν1⟩ , |ν2⟩ , |ν3⟩};

Flavor states → {|νe⟩ , |νµ⟩ , |ντ ⟩}
The general state of a neutrino can be expressed in flavor basis as:

|Ψ(t)⟩ = νe(t) |νe⟩+ νµ(t) |νµ⟩+ ντ (t) |ντ ⟩

Same state in propagation basis looks like:

|Ψ(t)⟩ = ν1(t) |ν1⟩+ ν2(t) |ν2⟩+ ν3(t) |ν3⟩

The coefficients in two representations are connected by a unitary matrixνe(t)
νµ(t)
ντ (t)

 =

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

ν1(t)
ν2(t)
ν3(t)

 .

or,
να(t) = Uνi (t). (1)
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Neutrino Oscillation

Quantum mechanics in neutrino oscillations
A convenient parametrization for U or U(θ12, θ23, θ13, δ) is given by the PMNS
matrix

U(θ12, θ23, θ13, δ) =

 c12c13 s12c13 s23e−iδ

−s12c23 − c12s23s13e iδ c12c23 − s12s23s13e iδ s23c13
s13s23 − c12c23s13e iδ −c12s23 − s12c23s13e iδ c23c13


where cij = cos θij , sij = sin θij , θij being the mixing angles and δ the CP
(Charge-Parity) violating phase.

The mass eigenstates evolve asν1(t)
ν2(t)
ν3(t)

 =

e−iE1t 0 0
0 e−iE2t 0
0 0 e−iE3t

ν1(0)
ν2(0)
ν3(0)

 ,

or,
νm(t) = Eνm(0) (2)

From 1 and 2, νf(t) = U EU−1 νf(0) = Uf νf(0).

Pαβ = δαβ − 4
∑
i>j

Re(U∗
αiUβiUαjU

∗
βj ) sin

2

(
1.27

∆ijL

E

)

+2
∑
i>j

Im(U∗
αiUβiUαjU

∗
βj ) sin

(
2.54

∆ijL

E

)
(3)

where ∆ij = m2
j −m2

i ≡ Ej − Ei .
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Neutrino Oscillation

Problems not resolved yet . . .

Neutrino mass hierarchy problem i .e., whether m1 ≤ m2 ≤ m3 or
m3 ≤ m1 ≤ m2 ).

CP violation (δ ̸= 0).
P(να → νβ) ̸= P(ν̄α → ν̄β)

Absolute mass
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Neutrino Oscillation

Neutrino experimental facilities

We included accelerator νµ- neutrino experimental conditions in our study such as

DUNE (L = 1300 Km, E = 1 - 10 GeV, A = 1.7×10−13 eV)

NOνA (L = 810 Km, E = 1 - 4 GeV, A = 1.7×10−13 eV)

T2K (L = 295 Km, E = 0.1 - 1 GeV, A = 1.01×10−13 eV)

(L → baseline, E → neutrino-energy, A → matter density potential)

Source: www.fnal.gov/

Khushboo Dixit (CAPP, University of Johannesburg) 8 / 27



Neutrino Oscillation

Matter effects on neutrino oscillations

Hf = UHmU
−1 + V diag(1, 0, 0) + VZ0 13×3.

where, V → matter density potential due to coherent-forward scattering of νe
with e− present in the matter.
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Spread Complexity

Complexity

How difficult is it to construct a desired target state with the elementary
operations (gates) at your end?

Or, the minimum number of unitaries required to construct a “target state”
through a “reference state”.

For a system |ϕ(s)⟩, if

U1U2U3U2 |ϕ(s)⟩ = U3U1U2U1(U1)
3U2 |ϕ(s)⟩ ,

then the complexity = 4.
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Spread Complexity

Complexity of spread of states
Balasubramanian et al., PRD 106, 046007 (2022)

The complexity of the state can be defined by minimizing the spread of the wavefunction over
all possible bases.

This minimum is uniquely attained by an orthonormal basis produced by applying the
Gram-Schmidt procedure.

Schrodinger equation for a system represented by |ψ(t)⟩

i
∂

∂t
|ψ(t)⟩ = H |ψ(t)⟩

Then, the time evolution of the state |ψ(t)⟩ is obtained as

|ψ(t)⟩ = e−iHt |ψ(0)⟩ .

One can also write

|ψ(t)⟩ =

∞∑
n=0

(−it)n

n!
Hn |ψ(0)⟩ =

∞∑
n=0

(−it)n

n!
|ψn⟩ ,

where, |ψn⟩ = Hn |ψ(0)⟩. Hence, we can see that the time evolved system-state |ψ(t)⟩ is represented
as superposition of infinite |ψn⟩ states.
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Spread Complexity

Complexity of spread of states

We have |ψn⟩ = Hn |ψ(0)⟩. These states {|ψ0⟩, |ψ1⟩, |ψ2⟩, . . . } are not orthonomalized.
Gram-Schmidt procedure to obtain an ordered orthonomalized basis

|K0⟩ = |ψ0⟩ ,

|K1⟩ = |ψ1⟩ −
⟨K0|ψ1⟩
⟨K0|K0⟩

|K0⟩ ,

|K2⟩ = |ψ2⟩ −
⟨K0|ψ2⟩
⟨K0|K0⟩

|K0⟩ −
⟨K1|ψ2⟩
⟨K1|K1⟩

|K1⟩ , and so on.

K = {|Kn⟩ , n = 0, 1, 2 . . . } ⇒ Krylov basis

Cost function to quantify the complexity (Balasubramanian et al., PRD 106, 046007 (2022))
For a time evolved state |ψ(t)⟩ and the Krylov basis defined as {|Kn⟩}, the cost function is

χ =

∞∑
n=0

n|⟨Kn|ψ(t)⟩|2,

where n = 0, 1, 2 . . . For such Krylov basis the above defined cost function becomes minimum.

Khushboo Dixit (CAPP, University of Johannesburg) 12 / 27



Spread Complexity in neutrino oscillations

Spread complexity in two flavor neutrino oscillations

The evolution of flavor states can be represented by Schrodinger equation as

i
∂

∂t

(
|νe(t)⟩
|νµ(t)⟩

)
= Hf

(
|νe(t)⟩
|νµ(t)⟩

)
(4)

where Hf = UHmU
−1, U being the mixing matrix and Hm is the Hamiltonian (diagonal) that governs

the time evolution of neutrino mass eigenstate

Hm =

(
E1 0
0 E2

)
, U =

(
cos θ sin θ
− sin θ cos θ

)
.

|νe(0)⟩ =

(
1
0

)
, |νµ(0)⟩ =

(
0
1

)
We have

{|ψn⟩} =

{
{|νe(0)⟩ ,Hf |νe(0)⟩ ,H2

f |νe(0)⟩ . . . } for initial νe flavor

{|νµ(0)⟩ ,Hf |νµ(0)⟩ ,H2
f |νµ(0)⟩ . . . } for initial νµ flavor

After applying Gram-Schmidt procedure we get {|Kn⟩} = {|K0⟩ , |K1⟩}, i.e.,

{|Kn⟩} =


{|K0⟩ =

(
1

0

)
, |K1⟩ =

(
0

1

)
} = {|νe⟩ , |νµ⟩} for initial νe

{|K0⟩ =

(
0

1

)
, |K1⟩ =

(
1

0

)
} = {|νµ⟩ , |νe⟩} for initial νµ
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Spread Complexity in neutrino oscillations

Spread complexity in two flavor neutrino oscillations

For a time evolved state |νe(t)⟩ =

(
Aee(t)
Aeµ(t)

)
=

(
cos2 θe−iE1t + sin2 θe−iE2t

sin θ cos θ(e−iE2t − e−iE1t )

)
(with {|Kn⟩} = {|νe(0)⟩ , |νµ(0)⟩})

χe =

1∑
n=0

n|⟨Kn|νe(t)⟩|2 = Peµ

Similarly, for state |νµ(t)⟩ = (Aµe(t),Aµµ(t))
T (with {|Kn⟩} = {|νµ(0)⟩ , |νe(0)⟩})

χµ = Pµe

The more the oscillation probability of neutrino flavor, the more complex the evolution of the
neutrino flavor state.

Since Peµ = Pµe for standard vacuum oscillations, the complexity embedded in this system
comes out to be same for both cases of initial flavor, i.e., complexity of the system doesn’t
depend on the initial flavor of neutrino.
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Spread Complexity in neutrino oscillations

Spread complexity in three flavor neutrino oscillations

We have three types of initial states as |νe⟩ =

(
1
0
0

)
, |νµ⟩ =

(
0
1
0

)
, |ντ ⟩ =

(
0
0
1

)
with Hamiltonian

Hf = UHmU
−1, Hm = diag(0,∆m2

21,∆m2
31) and U → 3 Ö 3 PMNS mixing matrix

U =

(
Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

)
=

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s13s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13


Here, Krylov basis ̸= flavor basis.

For initial |νe⟩ state |K0⟩ ≡ |νe⟩ =

(
1
0
0

)
, other states spanning the Krylov basis take the form

|K1⟩ = N1

(
0
a1
a2

)
= N1


0(

∆m2
21

2E

)
U∗

e2Uµ2 +
(

∆m2
31

2E

)
U∗

e3Uµ3(
∆m2

21
2E

)
U∗

e2Uτ2 +
(

∆m2
31

2E

)
U∗

e3Uτ3

 ,

|K2⟩ = N2

(
0
b1

b2

)
= N2


0(

∆m2
21

2E

)(
∆m2

21
2E − A

)
U∗

e2Uµ2 +
(

∆m2
31

2E

)(
∆m2

31
2E − A

)
U∗

e3Uµ3(
∆m2

21
2E

)(
∆m2

21
2E − A

)
U∗

e2Uτ2 +
(

∆m2
31

2E

)(
∆m2

31
2E − A

)
U∗

e3Uτ3


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Spread Complexity in neutrino oscillations

Spread complexity in three flavor neutrino oscillations

χe = Peµ(t)(N
2
1 |a1|

2 + 2N2
2 |b1|2) + Peτ (t)(N

2
1 |a2|

2 + 2N2
2 |b2|2) + 2ℜ(N2

1a
∗
1 a2Aeµ(t)Aeτ (t)

∗)

+ 4ℜ(N2
2b

∗
1 b2Aeµ(t)Aeτ (t)

∗)

with

A =

((
∆m2

21

)3 |Uα2|2(1 − |Uα2|2) +
(
∆m2

31

)3 |Uα3|2(1 − |Uα3|2)
−
(
∆m2

21

) (
∆m2

31

)
|Uα2|2|Uα3|2

(
∆m2

21 + ∆m2
31

))
(
∆m2

21

)2 |Uα2|2(1 − |Uα2|2) +
(
∆m2

31

)2 |Uα3|2(1 − |Uα3|2) − 2
(
∆m2

21

) (
∆m2

31

)
|Uα2|2|Uα3|2

,
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Spread Complexity in neutrino oscillations

Effects of different oscillation parameters

χe
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Figure: Complexity plotted with respect to the distance L over energy E traveled by neutrinos in vacuum and in case if
the initial flavor is νe (blue solid line), νµ (red dashed line) and ντ (green dot-dashed line) for CP-violating phase

δ = 0o . Here, mixing parameters θ12 = 33.64o , θ13 = 8.53o , θ23 = 47.63o , ∆m2
21 = 7.53 × 10−5 eV 2 and

∆m2
31 = 2.45 × 10−3 eV 2 are considered.

The rapid oscillation pattern seen in the left panel (zoomed-in in the right panel) is due to

∆m2
31 mass-squared difference in the oscillation phase, while the longer oscillation pattern is due

to ∆m2
21 in the oscillation phase. The oscillation length is ∼ 103 km at E = 1 GeV for ∆m2

31

and ∼ 3 × 104 km at E = 1 GeV for ∆m2
21.

In the general case the complexity is maximum if the neutrino is produced initially as νe ,
however, this happens only at a very large L/E value of ∼ 1.6 × 104 km/GeV.

In current experimental setups (right panel), which covers roughly one oscillation length for

∆m2
31, the initial νe flavor provides the least complexity among all neutrino flavors.
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Spread Complexity in neutrino oscillations

Effects of CP-violating parameter δ
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Figure: Complexities and 1-Pαα with respect to L/E .

Complexity mimics the features of the total oscillation probability 1 − Pαα.

However, it is visible that χα for all three flavors provide more information regarding the
CP-violating phase δ.
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Spread Complexity in neutrino oscillations
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Figure: Complexity for small L/E range (upper panels), large L/E range (lower panels) with respect to L/E for initial
flavor is νe (left), νµ (middle) and ντ (right) for different values of the CP-phase δ depicted by different colors.

For large L/E range the complexities are maximized and the corresponding δ = +90o or −90o

for χµ and χτ , and at δ = ±90o for χe where CP is maximally violated.

In the limited L/E range χµ and χτ are maximized at δ = −90o (red-dashed line) and at
δ = +90o (red-solid line), respectively. However, χe is maximized at δ = +135o and at −45o .
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Spread Complexity in neutrino oscillations

Matter effects on complexity

For any initial flavor να

|K0⟩matter
α = |K0⟩vacuumα

|K1⟩matter
α = |K1⟩vacuumα ,

|K2⟩ contains the effects of constant matter density

|K2⟩e = Nm
2e(0, b

m
1 , b

m
2 )

T

where,

bm1 =

(
∆m2

21

2E

)(
∆m2

21

2E
+ V − Be

)
U∗
e2Uµ2 +

(
∆m2

31

2E

)(
∆m2

31

2E
+ V − Be

)
U∗
e3Uµ3,

bm2 =

(
∆m2

21

2E

)(
∆m2

21

2E
+ V − Be

)
U∗
e2Uτ2 +

(
∆m2

31

2E

)(
∆m2

31

2E
+ V − Be

)
U∗
e3Uτ3.
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Spread Complexity in neutrino oscillations

Matter effects on complexity

Similarly, for the initial νµ flavor

|K2⟩µ = Nm
2µ(d

m
1 , 0, dm

2 )T ,

where,

dm
1 =

(
∆m2

21

2E

)(
∆m2

21

2E
+ V − Bµ

)
Ue2U

∗
µ2 +

(
∆m2

31

2E

)(
∆m2

31

2E
+ V − Bµ

)
Ue3U

∗
µ3

dm
2 =

(
∆m2

21

2E

)(
∆m2

21

2E
− Bµ

)
U∗
µ2Uτ2 +

(
∆m2

31

2E

)(
∆m2

31

2E
− Bµ

)
U∗
µ3Uτ3,

Khushboo Dixit (CAPP, University of Johannesburg) 21 / 27



Spread Complexity in neutrino oscillations

Matter effects on complexity
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Figure: Cost function χe (left), χµ (middle) and χτ (right) w. r. t. neutrino-energy E is shown. Here, L = 810 km,
δ = −90o and higher octant of θ23 is considered. Solid and dashed curves represent the case of vacuum and matter

oscillations, respectively. V = 1.01 × 10−13 eV.

Matter effect increases complexity of the system in all cases of initial flavors
of the neutrino, most significantly for νe as expected.
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Spread Complexity in neutrino oscillations

Spread complexity in neutrino oscillation experiments
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Figure: T2K: Cost function (upper panel) and 1-Pαα (lower panel) in the plane of E − δ in case of initial flavor νe
(left), νµ (middle) and ντ (right). Here, L = 295 km and mixing parameters θ12 = 33.64o , θ13 = 8.53o ,

θ23 = 47.63o , ∆m2
21 = 7.53 × 10−5 eV 2 and ∆m2

31 = 2.45 × 10−3 eV 2 are considered.
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Spread Complexity in neutrino oscillations
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Figure: NOνA: Cost function (upper panel) and 1-Pαα (lower panel) in the plane of E − δ in case of initial flavor νe
(left), νµ (middle) and ντ (right). Here, L = 810 km, and higher octant of θ23 (47.63o ) is considered.

For both the experiments, the maxima of χµ and χτ are found at δ ≈ −π/2 and δ = π/2,
respectively.

This means that the matter effect just enhances the magnitude of complexities, however, the
characteristics of χα with respect to δ are almost similar for both T2K and NOvA experiments.
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Spread Complexity in neutrino oscillations

In the T2K and NOvA experimental setups, where only νµ beams are produced, the only
relevant complexity is χµ.

For both the T2K and NOvA χµ is maximized at δ ≈ −1.5 radian at the relevant experimental

energies. The T2K best-fit value of δ = −2.14+0.90
−0.69 radian is consistent with this expectation.

The NOvA best-fit, however, is at δ ≈ 2.58 radian which is far away from the maximum χµ in
the lower-half plane of δ but is still within a region of high χµ value in the upper-half plane of δ.

Pµe , which is the only oscillation probability accessible to the T2K and NOvA setups, it
becomes maximum at δ ≈ −1.5 radian. This is compatible with T2K best-fit but is in odd with
the NOvA best-fit.

Complexity provides correct prediction for the δ in experimental setups.
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Spread Complexity in neutrino oscillations

Effects of neutrino mass ordering
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Figure: NOvA: Complexity with respect to neutrino-energy E in case of initial flavor νe (left), νµ (middle) and ντ
(right) with L = 810 km and δ = −90o . The upper and lower panel represent the case of vacuum and matter
oscillations, respectively. Solid curves are associated with NH and dashed curves depict the IH.

Complexity can distinguish between the effects due to normal (NH) (+∆31) and inverted
hierarchy (IH) (−∆31) in the presence of non-zero matter potential.
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Summary & Conclusions

Summary & Conclusions

We examined the spread complexity of neutrino states in two- and three-flavor oscillation
scenarios.

In the two-flavor scenario, complexity and transition probabilities yield equivalent information.

In case of three-flavor oscillation, initial flavor state evolves into two mixed final states. Hence,
the complexity contains additional information regarding open issues related to neutrinos,
compared to the total oscillation probability.

Remarkably, we found that the complexity is maximized for a value of the phase angle for which
CP is also maximally violated. T2K experimental data also favors this phase angle, which is
obtained from flavor transition.

Quantum spread complexity emerges as a potent and novel quantity for investigating neutrino
oscillations. It successfully reproduces existing results, also demonstrates the potential to serve
as a theoretical tool for predicting new outcomes in future experiments.
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Thank you for your attention!



BACKUP SLIDES

Khushboo Dixit (CAPP, University of Johannesburg) 28 / 27



Comparing the effects of neutrino mass ordering for neutrinos &
antineutrinos

For antineutrino → {V → −V , δ → −δ}
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Figure: NOvA: Complexities and Pµe with respect to neutrino-energy E where red and blue curves represent neutrino
and antineutrino case, respectively, with solid (normal ordering) and dashed (inverted ordering) lines. Here L = 810 km
and δ = −90o are considered.

For both neutrino and antineutrino, the effects of NH and IH are significantly distinguishable for
all three flavors.

In case of χe , red-solid line (neutrinos for NH) and blue-dashed line (antineutrinos for IH)
exhibit more complexity, i .e., complete swap between the NH (IH) hierarchy and ν (ν̄).

For χµ and χτ the maximum is achieved in case of neutrinos with NH and Antineutrinos with
IH, respectively.
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Spread complexity in three flavor (vacuum) neutrino oscillations

Similarly, for initial |νµ⟩, |K0⟩ ≡ |νµ⟩ = (0, 1, 0)T , then we get
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Spread complexity in three flavor neutrino oscillations

In case of |K0⟩ ≡ |ντ ⟩ = (0, 0, 1)T ,

|K1⟩ = N1τ (e1, e2, 0)
T = N1τ
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Here,
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Spread complexity in three flavor neutrino oscillations
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Matter effects on complexity
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Matter effects on complexity
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Figure: T2K: Cost function (upper panel) and 1-Pαα (lower panel) in the plane of E − δ in case of initial flavor νe
(left), νµ (middle) and ντ (right). Here, L = 295 km is considered.
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