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quantum complexity

quantifies the difficulty of
preparing the state from a simple, tensor-product
state, e.g., the n-qubit all-zero state [0™).

Example: onn qubits, the
of a state |¢) is the minimal number of 2-qubit
— gates in a circuit that implements a unitary U, with

[¢) = U|0").

We denote the quantum complexity of a state |¢)

by C(|1)).
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Quantum information Complexity quantifies

E ' E the difficulty of discriminating states and
preparing superpositions [ 1-31.

Condensed matter Complexities that

(%? scale linearly with system size distinguish

topological phases [4,5].

High-energy physics Conjecture in AdS/CFT:

® D the complexity of the field-theoretic state dual
L/ to a wormhole connecting two black holes is
proportional to the wormhole’s length [6-11].
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* An n-qubit state p has maximal

complexity Cpax ~ €™ [12].

quqn'l'um * The uncomplexity of p isthe

difference between the state’s

complexity

complexity and the maximal

complexity: Cpax — C(p)-

o
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Uncomplexity

Complexity growth in Useful states in Conjectqre that
systems with random quantum computation uncomplexity can be
dynamics [13] are "blank” qubits, just formally un;lerstood as
as blank paper is useful aresource In quantum
in pencil writing computation

(Brown & Susskind) [7]
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Quantum complexity is emerging as a key property of many-body systems, including black holes,
topological materials, and early quantum computers. A state’s complexity quantifies the number
of computational gates required to prepare the state from a simple tensor product. The greater a
state’s distance from maximal complexity, or “uncomplexity,” the more useful the state is as input
to a quantum computation. Separately, resource theories—simple models for agents subject to
constraints—are burgeoning in quantum information theory. We unite the two domains, confirming
Brown and Susskind’s conjecture that a resource theory of uncomplexity can be defined. The
allowed operations, fuzzy operations, are slightly random implementations of two-qubit gates chosen
by an agent. We formalize two operational tasks, uncomplexity extraction and expenditure. Their
optimal efficiencies depend on an entropy that we engineer to reflect complexity. We also present two
monotones, uncomplexity measures that decline monotonically under fuzzy operations, in certain
regimes. This work unleashes on many-body complexity the resource-theory toolkit from quantum
information theory.
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Resource
theory of
uncomplexity

Operational Complexity Optimal task

tasks entropy

Overview

efficiencies
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Resource theory

Resource
theory of
uncomplexity

Operational Complexity Optimal task
tasks entropy efficiencies

of uncomplexity
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An agent can perform any
chosen operation that satisfies
simple rules

States difficult to prepare are
scarce resources, which may

a resource theory facilitate operational tasks

A theory is defined by its allowed
operations on a set of states
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I Resource theory of entanglement [ 14]
* Free states: separable states

* Free operations: local quantum
operations and classical communication

(LOCC)

Resource theory of athermality [ 15] resovrce ’rheo ries

« States: pairs of density matrices and
time-independent Hamiltonians

* Free states: thermal equilibrium
states (Gibbs states)

« Free operations: processes that
conserve total energy under system-
bath heat exchanges
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uncomplexity

A fuzzy gate is a gate U implemented w.r.t. a probability distribution
pu,e(U) vanishing outside of the e-ball of a desired gate U, where € > 0
« Distance between gates given by operator norm: ||U — Ul|s < €

* Physical interpretation: model of noise

Allowed operations are fuzzy operations: compositions of fuzzy gates

No free states!
 Maximally complex (n + m)-qubit state has complexity ~ €"™™ but

tensoring together maximally complex n- and m-qubit states only
gives complexity ~ e" 4 e™
e Therefore tensoring-on creates uncomplexity!
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i I STARTED WITH SIMPLE ORIGAMI
HOw f)\ o ~\. PIECES.THE ONES T

co%;?f;%'y ‘ £7NQ)) = MAKE NOW REQUIRE

7 MORE $TEPS.

-

15 MEASURED T LOOKS LIKE

A TENFOLD
L INCREASE!
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Operational

Resource
theory of
uncomplexity

Operational Complexity Optimal task
tasks entropy efficiencies

tasks
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two tasks

Uncomplexity Uncomplexity
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r fuzzy gates

Procedure

* Apply to p a circuit of
< r fuzzy gates
 Select some numberw

UnCOmpleXiTy of the qubits

Task: Perform the above so
that the selected qubits
are d-closeto|0")in trace
distance
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I Let My and M, be the sets of 0- and r-complexity
measurement operators, respectively:

M, = {@(jmxob)% a; =0,1} Uncomplexity

M, = {UQoU, : Qo € My}

setup

Setup:

« Computationally limited referee wants to
distinguish p and 1%" /2™ with Q € M,
guessing p with probability > 7

* You, the agent, know @ and seek to fool the
referee with a simulacrum p
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Procedure: r fuzzy gates
I ——
» Borrow w uncomplex [0)'s T
from an “uncomplexity |J“nk>{ N

bank”, along with an 0) — o ( %
- unknown (n — w)-qubit state ((tW) N el =p7
UnCOmpleXITy « Apply < r gates to the joint I i

state and yield p

uncomplexity referee

Task: Have the referee, upon
receiving p, guess p, with
probability > n
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Resource

Complexity

Operational Complexity Optimal task
tasks entropy efficiencies

—

theory of
uncomplexity

entropy
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* Entropies are used to
bound the efficiencies of
operational tasks, e.g.,

Shannon entropy for data
compression

complexity entropy ISV quantify how

uncertain a state looks to a
computationally limited
observer
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The complexity entropy of an n-qubit
state p is, for n € (0, 1],

( N o | J
H(p) = min  {log, (T(Q))}. Definition of ‘
N B J complexity entropy

* (Qis constrained to have complexity < r

« Type-l error: @ must successfully identify p
with probability > 7

« H!" gives the minimal possible uncertainty

due to Type-Il error
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complexity entropy

Limiting cases
e A low-complexity state, e.g., p = [0")(0"| , may satisfy Tr(Qp) > n for some
performable @ = U,.[0")(0"|U and will yield H"(p) = log, (Tr(Q)) = log,(1) = 0.

e A high-complexity state may only satisfy Tr(Qp) > n for some performable
Q =U,19"U} = 1®°" and will yield H>"(p) = log, (Tr(Q)) = log,(2") = n.

* The hypothesis-testing entropy quantifies the Tr(Qp)>n

Relation to hypothesis-testing entropy [Hﬁ( I 5= . g%i%, { log, (Tr(Q))}]

uncertainty in a hypothesis test between p and 1%"/2".

* Like the complexity entropy but lacks computational restrictions
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ENTRORY
SENINAR:

THE RESULTS OF A
FIVE YEER STUDEE
NTU THE SEKENDLW

UF THURMODYNAMIKS
AAND I1Z INEVIBL
FXT HON SHEWB RT
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Optimal task

Resource Operational Complexity Optimal task

tasks entropy efficiencies

theory of
uncomplexity

efficiencies
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Uncomplexity Uncomplexity

entro PY extraction expenditure

theorems,

Each theorem establishes for one of the two tasks

* the of a protocol achieving the task

* the of the protocol
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Uncomplexity Extraction

Let p denote any n-qubit state, r € Z>¢, and J > 0.

Assume § > re. For every n € [1 — (§ — re)?, 1], some
protocol extracts w =n — H.""(p) qubits d-close to |0™)
in trace distance.

Conversely, every uncomplexity-extraction protocol
obeys w < n — HP17%(p).

Low-complexity limit: some protocol extracts
w = n qubits, others extract w < n qubits.

High-complexity limit: all protocols extract

w = 0 qubits.
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Uncomplexity Expenditure roYeT l

Let p denote an arbitrary n-qubit state. Let r € Z>q
and 6 > 0, and assume that 6 > 2re. For every n € (0, 1],
and for every (n — w)-qubit state o, p can be imitated

with w =n — H.""(p) uncomplex |0)’s.

Low-complexity limit: p can be imitated with
w = n qubits.

High-complexity limit: p can be imitated with
w = 0 qubits.
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WHY 1S T ALWANS

"THEY'Re 50 CUTe”

AND NOVeR “THeyre
SO COMPLEX P
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Resource
theory of
uncomplexity

Operational Complexity Optimal task
tasks entropy efficiencies

Summary
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s <\
* Determine properties and \

applications of the
complexity entropy

* Describe “phases” of
uncomplexity extraction

* Explore connections to
black hole physics
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