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What is this talk about?

@ Dynamics in Krylov space emerged as a novel probe of
chaos and complexity

- universal operator growth hypothesis
- operator growth (OTOC)
- complexity

e What is behind all of this?
- demystifying Krylov: it only knows about
C(t) = (A(t)A) or F(t) = (1))

- relation between C(t) and b, K (t) is very intricate



Recursion method
e ingredients: Hamiltonian H, an operator A, two-point
function C'(t) = (A(0)A(t))
e iterative relation defines basis A,, in Krylov space
Apt1 = [H, Ap] — an Ay — bi—lAnfl

Lanczos coefficients a,,, b, are fixed by requiring A,, are
mutually orthogonal, b2 = (A, 1A,41)/(AnAL)

e Liouvillian matrix L, is three-diagonal

[H, Ay] = Z Ly A

time evolution e** is easy to evaluate numerically



Math of Krylov method

Krylov space can be defined for any linear operator
_ _ gk
V9 =, v = H" v

Krylov space includes all eigenvectors/eigenvalues of H,
which have an overlap with vy

Lanczos method — choice of basis in Krylov space

L is defined by [H, A]; choice of cor. function — choice of
scalar product, affecting representation of L

isospectral deformation, integrable dynamics of a,, b,
with Gorsky, PRB 102, 085137 (2020)
temperature dependence — talk by Nick Angelinos

Lanczos coefficients b,, — a way to rewrite C(t)



Chaos from two-point function
power spectrum

F(w) = Qi / dt e O(t)

™

relation between f,C', and b,
fA(w) ~ e /w0« Cir) ~ (1 — wo_l)A

consistent with b, ~ Twon/2

signature of chaos?

f?(w) ~ e“/“0 is a signature of (classical) chaos
Elsayed, Hess, Fine, PRE 90, 022910 (2014)
singularity of |A(it) and C(it) is expected in a generic
quantum lattice model in D > 2

with A. Avdoshkin, PRR 2, 043234 (2020)



Universal operator growth hypothesis

in a generic quantum system Lanczos coefficients grow at
maximal possible rate (consistent with locality)

b, ~an

smart reformulation of Elsayed et al.?

Krylov complexity grows exponentially K ~ e2** and
bounds OTOC (conjecture)

K(t) =) lexl’k,  At) = cpAp.
k

Parker, Cao, Avdoshkin, Scaffidi, Altman PRX 9, 041017
partial proof Gu, Kitaev, Zhang JHEP 03 (2022) 133



Lanczos growth and chaos

e SYK model
Parker et al.’2019

e universal bounds on C'(¢) in lattice models
with Avdoshkin’2020

e non-integrable 1D Ising model in magnetic field
maximal growth of b, ~ n/In(n) (provided the behavior is
smooth)
Cao’2021

e faster then exponential decays of f2 for XXZ model
numerical evidence, Rigol et al.’2020
problems
e b, grow linearly in free theories; also not smooth

e b, probe scrambling, not chaos?
Bhattacharjee et al.’2022



Thermal 2pt function in CF'T

e “Wightman"-ordered thermal two point function

C(t) = Te(e P At e PHI2A) 1 Z(B).

e (C(t) always has a singularity at ¢t = i3/2
assuming b, is smooth they must behave as
b, =~ m(n+ A+1/2)/5, in which case K ~ s
e conjectural bound on OTOC in terms of Krylov
complexity becomes MSS bound

A < 2T
oToC >~ —
B



Universality of b,, in QFT

singularity at C(i3/2) or f(w) o< e=#/2 is dictated by
locality
relation between b,, and C'™ — sum over Dyck paths

MQk = C(2k)/c Z Hb z+hz+1)/2

--hog

integral over Dyck paths

1
) o = / DfeS, S = 2k / dtSo((F/(1)41)/2)+In b(2Kk ()
0
with A. Avdoshkin’2019
bp =m(n+A+1/2)/8

with Smolkin, PRD 104, L081702 (2021)



Free fields in various dimensions

e thermal 2pt function

C(—it) ~ C(2A,1/2+7/B) + ¢(2A,1/2 — 7/3)

e for scalar d = 4 and d = 6 b,, are known; for other d and
fermions theories — numerical results

e b, exhibit “staggering” but are sufficiently smooth; K ()

grows exponentially at the “MSS” rate
B b,
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with M. Smolkin, 2021



Holographic thermal 2pt function

e thermal 2pt function evaluated numerically
the behavior of b, asymptote to 7(n + A+ 1/2)/4
B bn
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exponential growth of Krylov complexity with A\, = 27/



Effects of 5 and UV cutoft

o f%(w) ox e /2 s fixed kinematically, because 2pt
function is singular when two operators collide

e another look: f?(w) oc e7#/2 is because
(E 4+ w/2|¢|E — w/2) is unsuppressed for large w — due
to Heisenberg uncertainty principle!

e conclusion: for any local ¢ behaviorf?(w) o< e=#*/2 and
hence linear growth of b,, follow automatically; asymptotic
behavior of b,, is not fixed when UV cutoff is introduced

e prediction: at low 7' coefficients b,, should exhibit linear
growth, even if the model is integrable!

more on temperature dependence: talk by Nick Angelinos



Spin-chain at different temperatures

o XY-model
H= ZXin‘H +YYi

7

e linear growth of b,, at small 7', saturation at UV-cutoff
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small 7" behavior is universal (field theory), real asymptote of
by, is controlled by UV physics



Universal growth hypothesis: upshot

e maximal asymptotic growth of b,, for generic
non-integrable systems

finite Ay, b, ~ Ayy, and thermodynamic limit, which
reduces to divergence of |A(it)]

e coarse grained universality of b, from p(FE)
as well OTOC, which also probes scrambling

Bhattacharjee, Cao, Nandy, Pathak '2022

e possibility of exotic behavior (several branches of b,,)?

Reformulation in terms of Krylov space opened new
connections with level statistics, OTOC, complexity, etc.



Dynamics in Krylov space and OTOC

e does C'(t) and b,, know about chaos (level statistics)?
Yes! spectrum of L is E,, — E,,
e coarse grained universality of b, from p(FE)
o

theory

n

imprint of (p(E)p(E")) is work in progress

talk by Javier Magan, Balasubramanian, Magan, Wu’22
Erdmenger, Jian, Xian’23

Hashimoto, Murata, Tanahashi, Watanabe’23



Dynamics in Krylov space and OTOC

e b, grow at maximal rate compatible with locality,
b, ~an

o Krylov complexity grows exponentially K ~ e*xt,
bounds OTOC

27
Aoroc < Ak (=2a) < 5

left inequality, conjectured by Parker et al., proved for
fA(w) ~ e7™ ) by Gu, Kitaev, Zhang'2021

right inequality, generalization when \gx # 2a, with
Avdoshkin’2020



Free massive scalar

e mass introduces “persistent staggering”

Bb, = agn+ a1 + (—1)”0&2
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Krylov complexity grows exponentially with \x < 27/
e for massive fermion qualitatively the same

with Avdoshkin and Smolkin, 2212.14429

also talk by Keun-Young Kim,

Camargo, Jahnke, Kima, Nishidac’22



Krylov complexity

«or «Fr o«
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Dynamics in Krylov space and complexity

e growth of K (t) should be compared with
holographic/computational complexity
Barbon, Rabinovici, Shir, Sinha’2019

e initial (exponential) growth, after that K (¢) grows
approximately linearly for an exponential time until
saturates at K (t) ~ e9(%)
numerical evidence from SYK model, spin chains, etc.,
bulk interpretation for SYK
Rabinovici, Sanchez-Garrido, Shir, Sonner’2021, 2022,2023

b v
20
s
10
os I B .
0 i a
o 2o 4o

6300 8000 10000 12000 14500 16000

e connection between K (¢) and complexity, Caputa, . ..



Free scalar on S° x S?

e what if the space is compact

2 2n 3

C(—ir) ~ -
; cosh?(m(¢R +iT)/B) R

e for finite R asymptotic behavior changes!

K(t)
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Krylov complexity is bounded from above, K (t) < Kpax(R/3)
e same qualitative picture for holographic model in TAdS




1D bosons on the lattice

e a model with mass, compact space, UV-cutoff

H = Z% (Gir1 — 0i)* + 1207

e slopes, controlled by N/ and UV cutoff
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1D bosons on the lattice

e 'staggering” controlled by [, slopes controlled by N/j3

Bbp

Bu=10, B=500
500 Bbm
350 o
400 . . N/B=0.5
* Bu=10, B=1000, N/B=0.5 . 300 e
. N/B=0.769
s00|* BH=30, f=1000, N/B=05 . ) 250 SRRy N/B=1
200
200 . RIS 150
RO 100
100
KLy 50
20 40 60 80 100 120 140

20 40 60 80 100 120 140

by tuning N/ two slopes will emerge well before the UV-cutoff

o if R/[ is sufficiently small, K(t) is bounded from above
by some UV-independent value!



Conclusions

Krylov space is a new avenue to unify approaches to chaos
extension of MSS bound
27
Aoroc < Ak < —
p
non-trivial checks

behavior of b,, as a probe of chaos, need for UV cutoff
imprint of level statistics?

Krylov complexity vs holographic/computational
complexity

suggestive but non-universal results
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Upper bound on infinity-norm

o Euclidean time evolution
ik

Aty =M Ae™™ =N "[H,...[H,A] i

k k times

e locality of interaction

H=> hi, [H,...[H A= > [, [, Al
I

I, Iy

e the bound

A< AR, 10 = 3 a2

clusters k

n(k) — number of sets I, ..., I, which satisfy adjacency
condition, associated with a given cluster (lattice animal)



Counting the sets I, ..., I,

e Each set [y, ..., I, defines lattice animal history
{I}Efl,...,fk—>{J}EJ1,...,Jj, ]ﬁk

o the map {/} — {J} defines a partition of k objects into j
groups, and vice versa

n(k) = S(k, 7)6(5)

n(k) — number of sets {I} associated with a given cluster
¢(7) — number this cluster’s histories {J}

N(k) = > nlk)=>_ Sk 1)6(j)

clusters



Summing over histories

e Stirling transform

e Stirling transform

k J
=Y N0 = o0, a=e -1,

J

@ summing over histories — new expansion parameter

Al jalfe,  7=3 0%, g=e-n
00



Bound for Bethe lattices

o Bethe lattice of coordination number z > 2
e exact number of lattice animal histories

(U +2/(z=2))

e the bound
f = (o= 2)g) /)
for z > 2 there is a pole at some t = 3
for z = 2, i.e. 1D lattices, f = €%

5

e for arbitrary lattices Bethe lattices
provide an upper bound




Euclidean operator growth and chaos

@ generic non-integrable quantum lattice models
D > 2, singularity at finite ¢t = 8*

4
A0S T gm0

D =1, double-exponential growth
[A(t)] < |Ale*

e Euclidean Lieb-Robinson
D > 2, operators spread to spatial infinity at finite ¢t = g*
D =1, operators spread exponentially, ¢ ~ In(¥)

I[A(#), B]| <2|A||B|eqq



Euclidean operator growth and OTOC
e location of the singularity of C'(8* = 7/(2a)) — slope of
Lanczos coefficients growth b,, oc aan bounds Aoroc
Aotoc < 2a

Parker, Cao, Avdoshkin, Scaffidi, Altman’18
Murthy, Srednicki’19

e improved bound on chaos for large T’

21T

AoToC < o5 .
- exact SYK s ‘
- improved bound 3
mvl = cos(mv/2)

- MSS bound 2\

0.0 0.2 0.4 0.6 0.8




Singularity of C'()
o scalar product in the space of operators
(BIA) == L TX(ABY),  C(1) = (AJA(1)
e adjoint action [H, | is self-adjoint with ( | )
Oty +12) = (A(0)|Alta) = (A(t1/2)]e15 )| At /2)
o assuming A(1/2) is typical

ote+) = 1A 2T < 1A pero-re-res

qualitatively, singularity of C(t) is associated with A(t)
spreading within Krylov space and becoming more typical



Chaos vs localization in Krylov space

e when the system is chaotic and C'(¢) has a singularity at
t =t*, A(t) delocalizes in Krylov space at t = t*/2

e when the system is integrable and C(t) is analytic, IPR is
finite and the operator is Localized

qualitatively similar to: localization/ergodicity in physical space
= localization / delocalization in Fock space

Altshuler, Gefen, Kamenev, Levitov’97

Basko, Aleiner, Altshuler’06



Main results
e universal bounds on the operator norm growth in lattice
models, Euclidean Lieb-Robinson bound

e Toda chain interpretation of the recursion method,
time-correlation function

@ chaos in the underlying quantum many-body system as
delocalization in Krylov space



Outlook

e Connection between Euclidean and Minkowski dynamics

e Can Toda help connect different manifestations of chaos?

- connection with OTOC

- connection with spectral properties

e Chaos as delocalization? Connection to BH physics?



