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What is this talk about?

Dynamics in Krylov space emerged as a novel probe of
chaos and complexity

- universal operator growth hypothesis

- operator growth (OTOC)

- complexity

What is behind all of this?

- demystifying Krylov: it only knows about

C(t) = ⟨A(t)A⟩ or F (t) = ⟨ψ(t)|ψ⟩

- relation between C(t) and bn, K(t) is very intricate



Recursion method

ingredients: Hamiltonian H, an operator A, two-point
function C(t) = ⟨A(0)A(t)⟩

iterative relation defines basis An in Krylov space

An+1 = [H,An]− anAn − b2n−1An−1

Lanczos coefficients an, bn are fixed by requiring An are
mutually orthogonal, b2n = ⟨An+1An+1⟩/⟨AnAn⟩

Liouvillian matrix Lnm is three-diagonal

[H,Ak] =
∑

LklAl

time evolution eiLt is easy to evaluate numerically



Math of Krylov method

Krylov space can be defined for any linear operator

v0 = v, vk = Hkv0

Krylov space includes all eigenvectors/eigenvalues of H,
which have an overlap with v0

Lanczos method – choice of basis in Krylov space

L is defined by [H,A]; choice of cor. function – choice of
scalar product, affecting representation of L
isospectral deformation, integrable dynamics of an, bn
with Gorsky, PRB 102, 085137 (2020)
temperature dependence – talk by Nick Angelinos

Lanczos coefficients bn – a way to rewrite C(t)



Chaos from two-point function
power spectrum

f2(ω) =
1

2π

∫
dt e−iωtC(t)

relation between f, C, and bn

f2(ω) ∼ e−ω/ω0 ↔ C(iτ) ∼ (τ − ω−1
0 )∆

consistent with bn ∼ πω0n/2

signature of chaos?

f2(ω) ∼ e−ω/ω0 is a signature of (classical) chaos
Elsayed, Hess, Fine, PRE 90, 022910 (2014)

singularity of |A(it) and C(it) is expected in a generic
quantum lattice model in D ≥ 2
with A. Avdoshkin, PRR 2, 043234 (2020)



Universal operator growth hypothesis

in a generic quantum system Lanczos coefficients grow at
maximal possible rate (consistent with locality)

bn ∼ αn

smart reformulation of Elsayed et al.?

Krylov complexity grows exponentially K ∼ e2αt and
bounds OTOC (conjecture)

K(t) =
∑
k

|ck|2k, A(t) =
∑

ckÃk.

Parker, Cao, Avdoshkin, Scaffidi, Altman PRX 9, 041017

partial proof Gu, Kitaev, Zhang JHEP 03 (2022) 133



Lanczos growth and chaos

SYK model
Parker et al.’2019

universal bounds on C(t) in lattice models
with Avdoshkin’2020

non-integrable 1D Ising model in magnetic field
maximal growth of bn ∼ n/ ln(n) (provided the behavior is
smooth)
Cao’2021

faster then exponential decays of f 2 for XXZ model
numerical evidence, Rigol et al.’2020

problems

bn grow linearly in free theories; also not smooth

bn probe scrambling, not chaos?
Bhattacharjee et al.’2022



Thermal 2pt function in CFT

“Wightman”-ordered thermal two point function

C(t) = Tr(e−βH/2A(t)e−βH/2A)/Z(β).

C(t) always has a singularity at t = iβ/2

assuming bn is smooth they must behave as

bn ≈ π(n+∆+ 1/2)/β, in which case K ∼ e
2π
β
t

conjectural bound on OTOC in terms of Krylov
complexity becomes MSS bound

λOTOC ≤ 2π

β



Universality of bn in QFT

singularity at C(iβ/2) or f(ω) ∝ e−βω/2 is dictated by
locality

relation between bn and C(n) – sum over Dyck paths

M2k = C(2k)/C =
∑

h1...h2k

∏
b(hi+hi+1)/2

integral over Dyck paths

C(2k)/C =

∫
DfeS , S = 2k

∫ 1

0
dtS2((f

′(t)+1)/2)+ln b(2kf(t))

with A. Avdoshkin’2019

bn ≈ π(n+∆+ 1/2)/β

with Smolkin, PRD 104, L081702 (2021)



Free fields in various dimensions

thermal 2pt function

C(−iτ) ∼ ζ(2∆, 1/2 + τ/β) + ζ(2∆, 1/2− τ/β)

for scalar d = 4 and d = 6 bn are known; for other d and
fermions theories – numerical results

bn exhibit “staggering” but are sufficiently smooth; K(t)
grows exponentially at the “MSS” rate
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Holographic thermal 2pt function

thermal 2pt function evaluated numerically

the behavior of bn asymptote to π(n+∆+ 1/2)/β
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exponential growth of Krylov complexity with λk = 2π/β



Effects of β and UV cutoff

f 2(ω) ∝ e−βω/2 is fixed kinematically, because 2pt
function is singular when two operators collide

another look: f 2(ω) ∝ e−βω/2 is because
⟨E + ω/2|ϕ|E − ω/2⟩ is unsuppressed for large ω – due
to Heisenberg uncertainty principle!

conclusion: for any local ϕ behaviorf 2(ω) ∝ e−βω/2 and
hence linear growth of bn follow automatically; asymptotic
behavior of bn is not fixed when UV cutoff is introduced

prediction: at low T coefficients bn should exhibit linear
growth, even if the model is integrable!

more on temperature dependence: talk by Nick Angelinos



Spin-chain at different temperatures

XY-model
H =

∑
i

XiXi+1 + YiYi+1

linear growth of bn at small T , saturation at UV-cutoff
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Universal growth hypothesis: upshot

maximal asymptotic growth of bn for generic
non-integrable systems

finite ΛUV , bn ∼ ΛUV , and thermodynamic limit, which

reduces to divergence of |A(it)|
coarse grained universality of bn from ρ(E)
as well OTOC, which also probes scrambling

Bhattacharjee, Cao, Nandy, Pathak ’2022

possibility of exotic behavior (several branches of bn)?

Reformulation in terms of Krylov space opened new
connections with level statistics, OTOC, complexity, etc.



Dynamics in Krylov space and OTOC

does C(t) and bn know about chaos (level statistics)?

Yes! spectrum of L is En − Em

coarse grained universality of bn from ρ(E)

imprint of ⟨ρ(E)ρ(E′)⟩ is work in progress

talk by Javier Magan, Balasubramanian, Magan, Wu’22
Erdmenger, Jian, Xian’23
Hashimoto, Murata, Tanahashi, Watanabe’23



Dynamics in Krylov space and OTOC

bn grow at maximal rate compatible with locality,
bn ∼ αn

Krylov complexity grows exponentially K ∼ eλKt,

bounds OTOC

λOTOC ≤ λK(= 2α) ≤ 2π

β

left inequality, conjectured by Parker et al., proved for
f 2(ω) ∼ e−πω(2α) by Gu, Kitaev, Zhang’2021

right inequality, generalization when λK ̸= 2α, with
Avdoshkin’2020



Free massive scalar
mass introduces “persistent staggering”

βbn = α0 n+ α1 + (−1)nα2
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Krylov complexity grows exponentially with λK < 2π/β

for massive fermion qualitatively the same
with Avdoshkin and Smolkin, 2212.14429
also talk by Keun-Young Kim,
Camargo, Jahnke, Kima, Nishidac’22



Krylov complexity



Dynamics in Krylov space and complexity

growth of K(t) should be compared with
holographic/computational complexity

Barbon, Rabinovici, Shir, Sinha’2019

initial (exponential) growth, after that K(t) grows
approximately linearly for an exponential time until
saturates at K(t) ∼ eO(S)

numerical evidence from SYK model, spin chains, etc.,
bulk interpretation for SYK

Rabinovici, Sanchez-Garrido, Shir, Sonner’2021, 2022,2023

connection between K(t) and complexity, Caputa, . . .



Free scalar on S3 × S1

what if the space is compact

C(−iτ) ∼
∑
ℓ

π2

cosh2(π(ℓR+ iτ)/β)
− 2πβ

R

for finite R asymptotic behavior changes!
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same qualitative picture for holographic model in TAdS



1D bosons on the lattice

a model with mass, compact space, UV-cutoff

H =

N∑
i=1

ϕ̇2i + (ϕi+1 − ϕi)
2 + µ2ϕ2i

slopes, controlled by N/β and UV cutoff
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1D bosons on the lattice

‘staggering” controlled by βµ, slopes controlled by N/β

βμ=10, β=1000, N/β=0.5
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if R/β is sufficiently small, K(t) is bounded from above
by some UV-independent value!



Conclusions

Krylov space is a new avenue to unify approaches to chaos

extension of MSS bound

λOTOC ≤ λK ≤ 2π

β

non-trivial checks

behavior of bn as a probe of chaos, need for UV cutoff

imprint of level statistics?

Krylov complexity vs holographic/computational
complexity

suggestive but non-universal results



Auxiliary slides



Upper bound on infinity-norm

Euclidean time evolution

A(t) ≡ etHAe−tH =
∑
k

[H, . . . [H,A]]︸ ︷︷ ︸
k times

tk

k!

locality of interaction

H =
∑
I

hI , [H, . . . [H,A]] =
∑

I1,...,Ik

[hIk , . . . [hI1 , A]]

the bound

|A(t)| ≤ |A|f(t), f(t) =
∑

clusters

∑
k

n(k)
(2J |t|)k

k!

n(k) – number of sets I1, . . . , Ik, which satisfy adjacency
condition, associated with a given cluster (lattice animal)



Counting the sets I1, . . . , Ik

Each set I1, . . . , Ik defines lattice animal history

{I} ≡ I1, . . . , Ik → {J} ≡ J1, . . . , Jj , j ≤ k

the map {I} → {J} defines a partition of k objects into j
groups, and vice versa

n(k) = S(k, j)ϕ(j)

n(k) – number of sets {I} associated with a given cluster

ϕ(j) – number this cluster’s histories {J}

N(k) =
∑

clusters

n(k) =
∑
j

S(k, j)ϕ(j)



Summing over histories

Stirling transform

N(k) =
∑
j

S(k, j)ϕ(j), ϕ(j) =
∑
k

s(k, j)N(k)

Stirling transform

f(t) ≡
∑
k

N(k)
tk

k!
=

∑
j

ϕ(j)
qj

j!
, q ≡ et − 1.

summing over histories – new expansion parameter

|A(t)| ≤ |A|f(t), f =
∑
j

ϕ(j)
qj

j!
, q ≡ e2J |t| − 1.



Bound for Bethe lattices

Bethe lattice of coordination number z ≥ 2

exact number of lattice animal histories

ϕ(j) = (z − 2)j
Γ(j + z/(z − 2))

Γ(z/(z − 2))

the bound

f = (1− (z − 2)q)−z/(z−2)

for z > 2 there is a pole at some t = β∗

for z = 2, i.e. 1D lattices, f = e2q

for arbitrary lattices Bethe lattices
provide an upper bound



Euclidean operator growth and chaos

generic non-integrable quantum lattice models
D ≥ 2, singularity at finite t = β∗

|A(t)| ≲ |A|
(1− q/q0)

D = 1, double-exponential growth

|A(t)| ≲ |A|e2q

Euclidean Lieb-Robinson
D ≥ 2, operators spread to spatial infinity at finite t = β∗

D = 1, operators spread exponentially, t ∼ ln(ℓ)

|[A(t), B]| ≤ 2|A||B|eq q
ℓ

ℓ!



Euclidean operator growth and OTOC

location of the singularity of C(β∗ = π/(2α)) – slope of

Lanczos coefficients growth bn ∝ αn bounds λOTOC

λOTOC ≤ 2α

Parker, Cao, Avdoshkin, Scaffidi, Altman’18
Murthy, Srednicki’19

improved bound on chaos for large T

λOTOC ≤ 2πT
1+2β∗T

· exact SYK

· improved bound

· MSS bound ⇡vT = cos(⇡v/2)
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Singularity of C(t)

scalar product in the space of operators

⟨B|A⟩ := 1

N
Tr(AB†), C(t) = ⟨A|A(t)⟩

adjoint action [H, ] is self-adjoint with ⟨ | ⟩

C(t1 + t2) = ⟨A(t1)|A(t2)⟩ = ⟨A(t1/2)|et2[H, ]|A(t1/2)⟩

assuming A(t/2) is typical

C(t+β) = ||A(t)||2Z(β)Z(−β)
Z(0)2

= ||A(t)||2e2F (0)−F (β)−F (−β)

qualitatively, singularity of C(t) is associated with A(t)
spreading within Krylov space and becoming more typical



Chaos vs localization in Krylov space

when the system is chaotic and C(t) has a singularity at
t = t∗, A(t) delocalizes in Krylov space at t = t∗/2

when the system is integrable and C(t) is analytic, IPR is
finite and the operator is Localized

C(t) ∝ eat
2/2, I ∝ t,

C(t) ∝ eae
mt
, I ∝ emt

qualitatively similar to: localization/ergodicity in physical space

= localization / delocalization in Fock space

Altshuler, Gefen, Kamenev, Levitov’97

Basko, Aleiner, Altshuler’06



Main results

universal bounds on the operator norm growth in lattice
models, Euclidean Lieb-Robinson bound

Toda chain interpretation of the recursion method,
time-correlation function

chaos in the underlying quantum many-body system as
delocalization in Krylov space



Outlook

Connection between Euclidean and Minkowski dynamics

Can Toda help connect different manifestations of chaos?

- connection with OTOC

- connection with spectral properties

Chaos as delocalization? Connection to BH physics?


