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pA-Tn5 based: 
ChIL-seq: Harada et al 2018 Nat Cell Biol  
CoBATCH: Wang et al 2019 Mol Cell 
CUT&TAG: Kaya-Okur et al 2019 Nat Comm 
scCUT&TAG: Bartosovic et al and Wu et al 2021 Nat Biotech  
autoCUT&TAG: Janssens et al 2021 Nature Genetics

pA-MNase based:  
CUT&RUN: Skene and Henikoff 2017 Elife 
uliCUT&RUN: Hainer et al 2019 Cell 
scChIC-seq: Ku et al 2019 Nat Methods 
iscChIC-seq: Ku et al. 2021 Genome Res 
sortChIC: Zeller*, Yeung* et al. 2022  
Nature Genetics

scChIPseq: 
Grosselin et al 2019 
Nature Genetics



For single-modality analysis, latent Dirichlet allocation 
(LDA) is a natural way to model sparse counts
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To generate a cut location wd,n  in cell d for the nth read:

1) Choose a latent variable (topic)
...

Latent factors

2) Choose a genomic region, given the latent variable

Parameters θ and P are inferred by  
collapsed Gibbs sampling

See also:  
Structure from Pritchard, Stephens, Donnelly 2000 
LDA from Blei, Ng, Jordan 2003
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Data science solution (mix and deconvolve):

How can we extract unique insights  
from this multimodal data?



scChIX-seq multiplexes two histone modifications 
together, then deconvolves the mixed signal
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Extending multinomial models to allow 
linear combinations of profiles



Apply scChIX-seq to uncover dynamic 
relationships between two active histone marks
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Peter ZellerMax Wellenstein

H3K4me1: active and primed regions 
H3K36me3: transcription Maria Florescu

Experimentalists:

Alexander van Oudenaarden group



scChIX-seq connects H3K4me1 and H3K36me3 
dynamics in single cells

8UMAP of cell-cell relationship matrix
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Inferring pseudotime along both H3K4me1 and 
H3K36me3 reveals distinct dynamics
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Inferring pseudotime along both H3K4me1 and 
H3K36me3 reveals distinct dynamics
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Find t and 𝝉 that maximizes multinomial likelihood:

K4me1 primes genes  
for transcription (K36me3)



Modeling the dynamics of both histone 
modifications reveals chromatin velocity
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Summary of 206 genes



12sortChIC: Zeller*, Yeung* et al. Nat Genetics 2022 scChIX-seq: Yeung*, Florescu*, et al. Nat Biotech 2023
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Integrative methods reveal interactions that are 
“greater than the sum of the parts”



Challenges: towards data science-driven 
experimental methods and design
• Data science-driven solutions can reveal experimental insights that expand the gene 

regulatory picture captured by single-cell genomics.


• Dynamics of different chromatin states can be distinct: why and how much they 
differ influences experimental design and integrative analysis.


• What are the limits of analyzing noisy snapshot data to learn the real underlying 
stochastic trajectories? Can they be (partially) alleviated?
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We use single-incubated data as training to infer cell type 
and heterochromatin identity in double-incubated cells
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Each double-incubated cell generates a likelihood 
grid, which gives probabilities for each cluster-pair
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Double-incubated analysis reveals heterochromatin 
can be shared across related cell types
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LDA gives these probabilities for free
Model for double-incubated counts coming from cluster b and ii:
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with highest probability

Double-incubated data



Distinct cell types from related lineage share 
similar heterochromatin
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Chromatin regulation gives information of its  
cell type and its lineage
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Repressive chromatin dynamics are distinct from 
active dynamics, and reveal hierarchical structure
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Full model is complex, but integration simplifies 
the update equation for Gibbs sampling
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Collapsed Gibbs sampling updates efficiently

Probability of assigning read n to topic k:
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How much a cell likes a topic

How much a topic likes a genomic locus


