Spectrahedral Regression

Eliza O'Reilly

Caltech

Joint work with Venkat Chandrasekaran

Convex Regression: Motivating Applications

Fitting a convex function to data is natural in many applications

- ► Economics¹
 - Natural convex relationships in data
- Engineering Design²
 - Ex: Aircraft profile drag, Circuit design
 - Ultimate goal is to optimize function
 - Convexity useful for computational efficiency

¹[Afriat, 1967; Varian, 1982, 1984; Hannah and Dunson, 2013] ²[Hannah and Dunson, 2012; Hoburg and Abbeel, 2014]

Special Case: Support Function Estimation

- Goal is to reconstruct the convex hull of an object
- Measurements are support function evaluations
- Support function of convex set $K \subset \mathbb{R}^d$ is

$$h_{\mathcal{K}}(u) := \max_{x \in \mathcal{K}} \langle x, u \rangle, \quad u \in \mathbb{S}^{d-1}$$

Applications: Radar, MRI, Computed Tomography³

³[Lele, Kulkani, and Willsky, 1992; Gregor and Rannou, 2002; Prince and Willsky, 1990]

Convex Regression

Goal: Estimate convex function \hat{f}_n from $\{(x_i, y_i)\}_{i=1}^n$ in $\mathbb{R}^d \times \mathbb{R}$ such that

 $y_i \approx \hat{f}_n(x_i)$

⁴[Prince and Willsky, 1990; Seijo and Sen, 2011]

Convex Regression

Goal: Estimate convex function \hat{f}_n from $\{(x_i, y_i)\}_{i=1}^n$ in $\mathbb{R}^d \times \mathbb{R}$ such that

$$y_i \approx \hat{f}_n(x_i)$$

First consider the least squares estimator (LSE):

$$\hat{f}_n \in \operatorname{argmin}_{g:\mathbb{R}^d \to \mathbb{R} \text{ is convex}} \frac{1}{n} \sum_{i=1}^n (g(x_i) - y_i)^2$$

⁴[Prince and Willsky, 1990; Seijo and Sen, 2011]

Convex Regression

Goal: Estimate convex function \hat{f}_n from $\{(x_i, y_i)\}_{i=1}^n$ in $\mathbb{R}^d \times \mathbb{R}$ such that

$$y_i \approx \hat{f}_n(x_i)$$

First consider the least squares estimator (LSE):

$$\hat{f}_n \in \operatorname{argmin}_{g:\mathbb{R}^d \to \mathbb{R} \text{ is convex}} \frac{1}{n} \sum_{i=1}^n (g(x_i) - y_i)^2$$

Solution to the LSE is the maximum of n affine functions⁴

► Can be computed using convex quadratic programming

⁴[Prince and Willsky, 1990; Seijo and Sen, 2011]

Drawbacks of LSE

- ► For *n* input-output pairs LSE is maximum of *n* affine functions
- Complexity increases with amount of data
- ► LSE is minimax suboptimal for Lipschitz convex regression ($d \ge 5$) and support function estimation ($d \ge 6$)⁵

LSE Reconstruction of the function $y = ||x||_2$ from n = 20, 50, 200 noisy measurements

⁵[Guntaboyina, 2012; Kur, Gao, Guntuboyina, and Sen, 2020; Kur, Rakhlin, and Guntuboyina, 2020]

• f is **m-polyhedral** if $f(x) = \max_{i=1,...,m} \{ \langle a_i, x \rangle + b_i \}$

► Constrain LSE over *m*-polyhedral functions

$$\hat{f}_n \in \operatorname{argmin}_{g:\mathbb{R}^d \to \mathbb{R} \text{ is } m \text{-polyhedral}} \frac{1}{n} \sum_{i=1}^n (g(x_i) - y_i)^2$$

⁶[Guntaboyina, 2012; Han and Wellner, 2016]

⁷[Magnani and Boyd, 2009; Hannah and Dunson, 2013; Balazs et al, 2015; Ghosh et al., 2020]

• *f* is **m-polyhedral** if $f(x) = \max_{i=1,...,m} \{ \langle a_i, x \rangle + b_i \}$

► Constrain LSE over *m*-polyhedral functions

$$\hat{f}_n \in \operatorname{argmin}_{g:\mathbb{R}^d \to \mathbb{R} \text{ is } m \text{-polyhedral}} \frac{1}{n} \sum_{i=1}^n (g(x_i) - y_i)^2$$

Obtains minimax rates⁶

⁶[Guntaboyina, 2012; Han and Wellner, 2016]

⁷[Magnani and Boyd, 2009; Hannah and Dunson, 2013; Balazs et al, 2015; Ghosh et al., 2020]

- f is **m-polyhedral** if $f(x) = \max_{i=1,...,m} \{ \langle a_i, x \rangle + b_i \}$
- ► Constrain LSE over *m*-polyhedral functions

$$\hat{f}_n \in \operatorname{argmin}_{g:\mathbb{R}^d \to \mathbb{R} \text{ is } m \text{-polyhedral}} \frac{1}{n} \sum_{i=1}^n (g(x_i) - y_i)^2$$

- Obtains minimax rates⁶
- Tractable methods for computing estimator ⁷

⁶[Guntaboyina, 2012; Han and Wellner, 2016]

⁷[Magnani and Boyd, 2009; Hannah and Dunson, 2013; Balazs et al, 2015; Ghosh et al., 2020]

- *f* is **m-polyhedral** if $f(x) = \max_{i=1,...,m} \{ \langle a_i, x \rangle + b_i \}$
- ► Constrain LSE over *m*-polyhedral functions

$$\hat{f}_n \in \operatorname{argmin}_{g:\mathbb{R}^d \to \mathbb{R} \text{ is } m \text{-polyhedral}} \frac{1}{n} \sum_{i=1}^n (g(x_i) - y_i)^2$$

- Obtains minimax rates⁶
- Tractable methods for computing estimator ⁷

> Drawback: polyhedral approximations of non-polyhedral functions and sets

⁶[Guntaboyina, 2012; Han and Wellner, 2016]

⁷[Magnani and Boyd, 2009; Hannah and Dunson, 2013; Balazs et al, 2015; Ghosh et al., 2020]

Spectrahedral Regression [O. & Chandrasekaran, '22]

- \mathbb{S}^m : $m \times m$ real symmetric matrices
- ► A function *f* is **m-spectrahedral** if for some $A_0, \ldots, A_d \in \mathbb{S}^m$,

$$f(x) = \lambda_{\max}\left(\sum_{i=1}^{d} x_i A_i + A_0\right)$$

► Constrain LSE over *m*-spectrahedral functions

$$\hat{f}_n \in \operatorname{argmin}_{g:\mathbb{R}^d \to \mathbb{R} \text{ is } m \text{-spectrahedral}} \frac{1}{n} \sum_{i=1}^n (g(x_i) - y_i)^2$$

Spectrahedral Regression [O. & Chandrasekaran, '22]

- \mathbb{S}^m : $m \times m$ real symmetric matrices
- ► A function *f* is **m-spectrahedral** if for some $A_0, \ldots, A_d \in \mathbb{S}^m$,

$$f(x) = \lambda_{\max}\left(\sum_{i=1}^{d} x_i A_i + A_0\right)$$

► Constrain LSE over *m*-spectrahedral functions

$$\hat{f}_n \in \operatorname{argmin}_{g:\mathbb{R}^d \to \mathbb{R} \text{ is } m \text{-spectrahedral}} \frac{1}{n} \sum_{i=1}^n (g(x_i) - y_i)^2$$

Spectrahedral Regression [O. & Chandrasekaran, '22]

- \mathbb{S}^m : $m \times m$ real symmetric matrices
- ► A function *f* is **m-spectrahedral** if for some $A_0, \ldots, A_d \in \mathbb{S}^m$,

$$f(x) = \lambda_{\max}\left(\sum_{i=1}^{d} x_i A_i + A_0\right)$$

► Constrain LSE over *m*-spectrahedral functions

$$\hat{f}_n \in \operatorname{argmin}_{g:\mathbb{R}^d \to \mathbb{R} \text{ is } m \text{-spectrahedral}} \frac{1}{n} \sum_{i=1}^n (g(x_i) - y_i)^2$$

Linear \rightarrow Semidefinite programming

Can optimize *m*-polyhedral function

$$f(x) = \max_{i=1,\dots,m} \{ \langle a_i, x \rangle + b_i \}$$

using linear programming

• $\{(x, y) \in \mathbb{R}^{d+1} : f(x) \le y\}$ is a **polyhedron**

 $\{(x, y) \in \mathbb{R}^{d+1} : 0 \le y - \langle a_i, x \rangle - b_i, i = 1, \dots, m\}$

Linear \rightarrow Semidefinite programming

Can optimize *m*-polyhedral function

$$f(x) = \max_{i=1,\dots,m} \{ \langle a_i, x \rangle + b_i \}$$

using linear programming

► {
$$(x, y) \in \mathbb{R}^{d+1} : f(x) \le y$$
} is a **polyhedron**
{ $(x, y) \in \mathbb{R}^{d+1} : 0 \le y - \langle a_i, x \rangle - b_i, i = 1, ..., m$ }

Can optimize *m*-spectrahedral function $f(x) = \lambda_{\max} \left(\sum_{i=1}^{d} x_i A_i + A_0 \right)$ using semidefinite programming

• $\{(x, y) \in \mathbb{R}^{d+1} : f(x) \le y\}$ is a spectrahedron

$$\{(x,y) \in \mathbb{R}^{d+1} : 0 \preccurlyeq yl - \sum_{i=1}^d x_i A_i - A_0\}$$

Spectrahedral Regression: Average Weekly Wages

Data set: 1988 Current Population Survey: 25,361 records of weekly wages with (i) Experience (ii) Education

Figure: Spectrahedral (m = 3) and Polyhedral (m = 6) estimators of average weekly wages versus years experience and education

Spectrahedral Regression: Aircraft Design

Data set: XFOIL simulated data of airplane wing profile drag coefficient as a function of the Reynolds number and lift coefficient

Figure: Spectrahedral (m = 3) and Polyhedral (m = 6) estimators

Support Function Estimation [Soh & Chandrasekaran, 21]

▶ Polyhedral regression \rightarrow Constrain LSE over polytopes with *m* vertices:

Figure: m = 6, m = 12 polytope, and LSE reconstructions of the unit ℓ_1 -ball from 200 noisy support function measurements

Support Function Estimation [Soh & Chandrasekaran, 21]

▶ Polyhedral regression \rightarrow Constrain LSE over polytopes with *m* vertices:

Figure: m = 6, m = 12 polytope, and LSE reconstructions of the unit ℓ_1 -ball from 200 noisy support function measurements

- Spectrahedral regression → Constrain LSE over m-spectratopes
- *m*-spectratopes are linear images of an *m*-dimensional spectroplex:

$$\{X \in \mathbb{S}^m : X \succeq 0, \langle X, I \rangle = 1\}$$

Figure: m = 3 spectratope and LSE reconstructions of ℓ_2 -ball from 50 noisy support function measurements

Support Function Estimation: Lung Reconstruction

Figure: LSE and *m*-spectrahedral (m = 3) lung reconstruction⁸

⁸[Soh and Chandrasekaran, 2021]

Block Spectrahedral Regression

- f is (\mathbf{m}, \mathbf{k}) -spectrahedral if $f(\mathbf{x}) = \lambda_{\max} \left(\sum_{i=1}^{d} x_i A_i + A_0 \right)$ where
 - $A_0, \ldots, A_d \in \mathbb{S}_k^m$ are block-diagonal with blocks of size k

Block Spectrahedral Regression

• f is (\mathbf{m}, \mathbf{k}) -spectrahedral if $f(x) = \lambda_{\max} \left(\sum_{i=1}^{d} x_i A_i + A_0 \right)$ where

 $A_0, \ldots, A_d \in \mathbb{S}_k^m$ are block-diagonal with blocks of size k

Figure: Polyhedral (m, k) = (6, 1), block spectrahedral (m, k) = (4, 2), and spectrahedral m = 3 reconstructions of $y = ||x||_2$.

Block Spectrahedral Regression

• f is (\mathbf{m}, \mathbf{k}) -spectrahedral if $f(x) = \lambda_{\max} \left(\sum_{i=1}^{d} x_i A_i + A_0 \right)$ where

 $A_0, \ldots, A_d \in \mathbb{S}_k^m$ are block-diagonal with blocks of size k

Figure: Polyhedral (m, k) = (6, 1), block spectrahedral (m, k) = (4, 2), and spectrahedral m = 3 reconstructions of $y = \exp(\langle x, b \rangle)$.

1. How do you compute the spectrahedral estimator?

2. What is the expressive power of spectrahedral functions?

Questions

1. How do you compute the spectrahedral estimator?

2. What is the expressive power of spectrahedral functions?

Alternating Minimization

• For $\mathcal{A} = (A_0, \dots, A_d) \in (\mathbb{S}_k^m)^{d+1}$, define $\mathcal{A}[\xi] = \sum_{j=0}^d \xi_j A_j$

• Let $\xi^{(i)} = (x^{(i)}, 1) \in \mathbb{R}^{d+1}$. Want to compute:

$$\hat{\mathcal{A}} \in \operatorname{argmin}_{\mathcal{A} \in (\mathbb{S}_{k}^{n})^{d+1}} \frac{1}{n} \sum_{i=1}^{n} \left[\gamma^{(i)} - \lambda_{\max} \left(\mathcal{A}[\xi^{(i)}] \right) \right]^{2},$$

Alternating Minimization

• For
$$\mathcal{A} = (A_0, \dots, A_d) \in (\mathbb{S}_k^m)^{d+1}$$
, define $\mathcal{A}[\xi] = \sum_{j=0}^d \xi_j A_j$

• Let $\xi^{(i)} = (x^{(i)}, 1) \in \mathbb{R}^{d+1}$. Want to compute:

$$\hat{\mathcal{A}} \in \operatorname{argmin}_{\mathcal{A} \in (\mathbb{S}_{k}^{m})^{d+1}} \frac{1}{n} \sum_{i=1}^{n} \left[\boldsymbol{y}^{(i)} - \lambda_{\max} \left(\mathcal{A}[\boldsymbol{\xi}^{(i)}] \right) \right]^{2},$$

Input: Data collection $\{(x^{(i)}, y^{(i)})\}_{i=1}^n$; initialization $\mathcal{A} \in (\mathbb{S}_k^m)^{d+1}$ **Algorithm**: Repeat until convergence

- ▶ **Step 1**: Update optimal eigenvectors $u^{(i)} \leftarrow \lambda_{\max}(\mathcal{A}[\xi^{(i)}])$
- ► **Step 2**: Update *A* by solving

$$\operatorname{argmin}_{\mathcal{A} \in (\mathbb{S}_k^m)^{d+1}} \frac{1}{n} \sum_{i=1}^n \left(\boldsymbol{y}^{(i)} - \langle \boldsymbol{u}^{(i)}, \mathcal{A}[\boldsymbol{\xi}^{(i)}] \rangle \right)^2,$$

i.e. $\mathcal{A}^+ \leftarrow (\Xi_{\mathcal{A}}^\top \Xi_{\mathcal{A}})^{-1} \Xi_{\mathcal{A}}^\top y$, where $\Xi_{\mathcal{A}}^\top = (\xi^{(1)} \otimes u^{(1)} | \cdots | \xi^{(n)} \otimes u^{(n)})$ **Output:** Final iterate \mathcal{A}

Local Convergence Guarantee for AM

Assumption: $\{(x_i, y_i)\}_{i=1}^n$ i.i.d. samples from $(X, Y) \in \mathbb{R}^d \times \mathbb{R}$ such that

 $X \sim \mathcal{N}(0, \mathcal{I}), \quad Y = \lambda_{\max}(\mathcal{A}_*[\xi]) + \varepsilon, \quad \xi = (X, 1), \quad \varepsilon \sim \mathcal{N}(0, \sigma^2)$

Local Convergence Guarantee for AM

Assumption: $\{(x_i, y_i)\}_{i=1}^n$ i.i.d. samples from $(X, Y) \in \mathbb{R}^d \times \mathbb{R}$ such that

$$X \sim \mathcal{N}(0, \mathcal{I}), \quad Y = \lambda_{\max}(\mathcal{A}_*[\xi]) + \varepsilon, \quad \xi = (X, 1), \quad \varepsilon \sim \mathcal{N}(0, \sigma^2)$$

Suppose that the true parameter $\mathcal{A}_* \in (\mathbb{S}_k^m)^{d+1}$ satisfies:

$$\inf_{u\in\mathbb{S}^d}\lambda_1(\mathcal{A}_*[u])-\lambda_2(\mathcal{A}_*[u]):=\kappa>0$$

Local Convergence Guarantee for AM

Assumption: $\{(x_i, y_i)\}_{i=1}^n$ i.i.d. samples from $(X, Y) \in \mathbb{R}^d \times \mathbb{R}$ such that

 $X \sim \mathcal{N}(0, \mathcal{I}), \quad Y = \lambda_{\max}(\mathcal{A}_*[\xi]) + \varepsilon, \quad \xi = (X, 1), \quad \varepsilon \sim \mathcal{N}(0, \sigma^2)$

Suppose that the true parameter $\mathcal{A}_* \in (\mathbb{S}_k^m)^{d+1}$ satisfies:

$$\inf_{u\in\mathbb{S}^d}\lambda_1(\mathcal{A}_*[u])-\lambda_2(\mathcal{A}_*[u]):=\kappa>0$$

Theorem (O. and Chandrasekaran)

If the initial parameter $\mathcal{A}^{(0)}$ satisfies

$$\|\mathcal{A}^{(0)}-\mathcal{A}_*\|_F^2 \leq \frac{c_1\kappa^2}{(d+1)m},$$

and n is large enough, then the error at all iterations $t \ge 1$ simultaneously satisfies

$$\|\mathcal{A}^{(t)} - \mathcal{A}_*\|_F^2 \le \left(\frac{3}{4}\right)^t \|\mathcal{A}^{(0)} - \mathcal{A}_*\|_F^2 + \frac{c_2 m^3 (d+1) \sigma^2 \log(n)^2}{n}$$

with high probability, where c_1 and c_2 are absolute constants.

Assumption: $\{(x_i, y_i)\}_{i=1}^n$ i.i.d. samples from $(X, Y) \in \mathbb{R}^d \times \mathbb{R}$ such that

 $\|X\|_{\infty} \leq \eta, \quad Y = \lambda_{\max}(\mathcal{A}_{*}[\xi]) + \varepsilon, \quad \xi = (X, 1), \quad \varepsilon \sim \mathcal{N}(0, \sigma^{2})$

Assumption: $\{(x_i, y_i)\}_{i=1}^n$ i.i.d. samples from $(X, Y) \in \mathbb{R}^d \times \mathbb{R}$ such that

 $\|X\|_{\infty} \leq \eta, \quad Y = \lambda_{\max}(\mathcal{A}_{*}[\xi]) + \varepsilon, \quad \xi = (X, 1), \quad \varepsilon \sim \mathcal{N}(0, \sigma^{2})$

$$\mathcal{A}_{*}[\xi] = \begin{bmatrix} \mathcal{A}_{*}^{(1)}[\xi] & \dots & 0\\ \vdots & \ddots & \vdots\\ 0 & \dots & \mathcal{A}_{*}^{(m/k)}[\xi] \end{bmatrix}$$

Assumption: $\{(x_i, y_i)\}_{i=1}^n$ i.i.d. samples from $(X, Y) \in \mathbb{R}^d \times \mathbb{R}$ such that

 $\|X\|_{\infty} \leq \eta, \quad Y = \lambda_{\max}(\mathcal{A}_{*}[\xi]) + \varepsilon, \quad \xi = (X, 1), \quad \varepsilon \sim \mathcal{N}(0, \sigma^{2})$

$$\mathcal{A}_{*}[\xi] = \begin{bmatrix} \mathcal{A}_{*}^{(1)}[\xi] & \dots & 0\\ \vdots & \ddots & \vdots\\ 0 & \dots & \mathcal{A}_{*}^{(m/k)}[\xi] \end{bmatrix}$$

► There exists $\kappa > 0$ and $\delta \in (0, 1)$ such that for all $j, \ell \in \{1, \dots, m/k\}$, $\inf_{j \neq \ell} \mathbb{E} \left[|\lambda_1(\mathcal{A}_*^{(j)}[\xi]) - \lambda_1(\mathcal{A}_*^{(\ell)}[\xi])| \right] \ge \frac{m\kappa}{k\delta}.$ and if $k \ge 2$, for all $j \in \{1, \dots, m/k\}$ $\inf_{j=1,\dots,m/k} \inf_{u \in \mathbb{S}^d} \lambda_1(\mathcal{A}_*^{(j)}[u]) - \lambda_2(\mathcal{A}_*^{(j)}[u]) := \kappa > 0.$

Assumption: $\{(x_i, y_i)\}_{i=1}^n$ i.i.d. samples from $(X, Y) \in \mathbb{R}^d \times \mathbb{R}$ such that

 $\|X\|_{\infty} \leq \eta, \quad Y = \lambda_{\max}(\mathcal{A}_{*}[\xi]) + \varepsilon, \quad \xi = (X, 1), \quad \varepsilon \sim \mathcal{N}(0, \sigma^{2})$

$$\mathcal{A}_{*}[\xi] = \begin{bmatrix} \mathcal{A}_{*}^{(1)}[\xi] & \dots & 0\\ \vdots & \ddots & \vdots\\ 0 & \dots & \mathcal{A}_{*}^{(m/k)}[\xi] \end{bmatrix}$$

► There exists $\kappa > 0$ and $\delta \in (0, 1)$ such that for all $j, \ell \in \{1, \dots, m/k\}$, $\inf_{j \neq \ell} \mathbb{E} \left[|\lambda_1(\mathcal{A}_*^{(j)}[\xi]) - \lambda_1(\mathcal{A}_*^{(\ell)}[\xi])| \right] \ge \frac{m\kappa}{k\delta}.$ and if $k \ge 2$, for all $j \in \{1, \dots, m/k\}$ $\inf_{j=1,\dots,m/k} \inf_{u \in \mathbb{S}^d} \lambda_1(\mathcal{A}_*^{(j)}[u]) - \lambda_2(\mathcal{A}_*^{(j)}[u]) := \kappa > 0.$

Assume that there is a constant c > 0 such that for all $\mathcal{A} \neq \mathcal{B} \in (\mathbb{S}^k)^{d+1}$, $\mathbb{P}(|\lambda_1(\mathcal{A}[\xi]) - \lambda_1(\mathcal{B}[\xi])| \le \rho \mathbb{E}[|\lambda_1(\mathcal{A}[\xi]) - \lambda_1(\mathcal{B}[\xi])|]) \le c\rho$, for all $\rho > 0$.

Theorem (O. and Chandrasekaran)

If the initial parameter choice \mathcal{A}_0 satisfies

$$\|\mathcal{A}^{(0)} - \mathcal{A}_*\|_F^2 \le \frac{c_1 \kappa^2 k^3}{(d+1)^3 m^5},$$

and n is large enough, then the error at all iterations $t \ge 1$ simultaneously satisfies

$$\|\mathcal{A}^{(t)} - \mathcal{A}_*\|_F^2 \le \left(\frac{3}{4}\right)^t \|\mathcal{A}^{(0)} - \mathcal{A}_*\|_F^2 + \frac{c_2 m^3 (d+1) \sigma^2 \log(n)^2}{n},$$

with probability $\rightarrow 1 - 3\delta$ as $n \rightarrow \infty$.

1. How do you compute the spectrahedral estimator?

2. What is the expressive power of spectrahedral functions?

Expressiveness of Spectrahedral Functions

How well do (m, k)-spectrahedral functions approximate Lipschitz convex functions?

> A result of Dudley (1974) implies that for **polyhedral** functions,

$$\sup_{\substack{f: \Omega \to \mathbb{R} \text{ convex } g \text{ is } m \text{ -polyhedral} \\ \text{and } L\text{-Lipschitz}} \|g - f\|_{\infty} = O(m^{-\frac{2}{d}})$$

Expressiveness of Spectrahedral Functions

How well do (m, k)-spectrahedral functions approximate Lipschitz convex functions?

A result of Dudley (1974) implies that for **polyhedral** functions,

$$\sup_{\substack{f: \Omega \to \mathbb{R} \text{ convex } g \text{ is } m \text{-polyhedral} \\ and L-Lipschitz}} \|g - f\|_{\infty} = O(m^{-\frac{2}{d}})$$

Theorem (O. and Chandrasekaran)

Suppose $k_m = O(m^t)$ for $t \in [0, 1]$. For all $\varepsilon > 0$,

$$O\left(m^{-\frac{2(1+t)}{d}-\varepsilon}\right) \leq \sup_{\substack{f: \Omega \to \mathbb{R} \text{ convex} \\ and L-Lipschitz}} \inf_{\substack{g \text{ is } (m, k_m) \text{-spectrahedral}}} \|g - f\|_{\infty} \leq O\left(m^{-\frac{2}{d}}\right)$$

► For constant k, approximation rate is same as for *m*-polyhedral functions

Proof Idea: Use Statistical Risk Bound

Define

$$\hat{f}_{m,k}^{(n)} \in \operatorname{argmin}_{g \text{ is } (m, k) \text{-spectrahedral}} \frac{1}{n} \sum_{i=1}^{n} (g(x_i) - y_i)^2,$$

where $\{(x_i, y_i)\}_{i=1}^n$ are i.i.d. samples of a random pair $(X, Y) \in \mathbb{R}^d \times \mathbb{R}$ s.t.

$$Y = f(X) + \varepsilon$$

Theorem (O. and Chandrasekaran)

$$\mathbb{E}[(\hat{f}_{m,k}^{(n)}(X) - f(X))^2] \le O\left(\inf_{g \text{ is } (m, k) \text{-spectrahedral}} \|g - f\|_{\infty}^2 + \frac{km\log(n)}{n}\right)$$

Minimax rate for class of convex and L-Lipschitz functions⁹ implies

 $\sup_{X \to \mathbb{R}} \mathbb{E}[(\hat{f}_{m,k}^{(n)}(X) - f(X))^2] \ge O(n^{-\frac{4}{d+4}})$

 $f: \Omega \rightarrow \mathbb{R}$ convex and L-Lipschitz

⁹[Balázs, György, and Szepesvári, 2015]

Summary

- **Spectrahedral regression** is a new approach for fitting convex functions to data that generalizes polyhedral regression
- ► Returns convex estimators that exhibit **both smooth and singular** features
- Expressiveness of spectrahedral functions has implications for how well semidefinite relaxations approximate general convex optimization
- **Empirical evidence**: *m*-spectrahedral regression performs comparably to m(m + 1)/2-polyhedral regression

Future Work

- Guidance for parameter selection and tuning
- Computational Guarantees: initialization, extend other approaches for polyhedral regression
- ► Approximation power of (*m*, *k*)-spectrahedral functions
- > Other shape-constrained regression, density estimation applications

Thank you!

Questions?