Spectrahedral Regression

Eliza O'Reilly

Caltech

Joint work with Venkat Chandrasekaran

Convex Regression: Motivating Applications

Fitting a convex function to data is natural in many applications

- Economics ${ }^{1}$
- Natural convex relationships in data
- Engineering Design²
- Ex: Aircraft profile drag, Circuit design
- Ultimate goal is to optimize function
- Convexity useful for computational efficiency

[^0]
Special Case: Support Function Estimation

- Goal is to reconstruct the convex hull of an object
- Measurements are support function evaluations
- Support function of convex set $K \subset \mathbb{R}^{d}$ is

$$
h_{K}(u):=\max _{x \in K}\langle x, u\rangle, \quad u \in \mathbb{S}^{d-1}
$$

Applications: Radar, MRI, Computed Tomography ${ }^{3}$

[^1]
Convex Regression

Goal: Estimate convex function \hat{f}_{n} from $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$ in $\mathbb{R}^{d} \times \mathbb{R}$ such that

$$
y_{i} \approx \hat{f}_{n}\left(x_{i}\right)
$$

Convex Regression

Goal: Estimate convex function \hat{f}_{n} from $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$ in $\mathbb{R}^{d} \times \mathbb{R}$ such that

$$
y_{i} \approx \hat{f}_{n}\left(x_{i}\right)
$$

First consider the least squares estimator (LSE):

$$
\hat{f}_{n} \in \operatorname{argmin}_{g: \mathbb{R}^{d} \rightarrow \mathbb{R}} \text { is convex } \frac{1}{n} \sum_{i=1}^{n}\left(g\left(x_{i}\right)-y_{i}\right)^{2}
$$

[^2]
Convex Regression

Goal: Estimate convex function \hat{f}_{n} from $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$ in $\mathbb{R}^{d} \times \mathbb{R}$ such that

$$
y_{i} \approx \hat{f}_{n}\left(x_{i}\right)
$$

First consider the least squares estimator (LSE):

$$
\hat{f}_{n} \in \operatorname{argmin}_{g: \mathbb{R}^{d} \rightarrow \mathbb{R}} \text { is convex } \frac{1}{n} \sum_{i=1}^{n}\left(g\left(x_{i}\right)-y_{i}\right)^{2}
$$

- Solution to the LSE is the maximum of n affine functions ${ }^{4}$
- Can be computed using convex quadratic programming

[^3]
Drawbacks of LSE

- For n input-output pairs LSE is maximum of n affine functions
- Complexity increases with amount of data
- LSE is minimax suboptimal for Lipschitz convex regression ($d \geq 5$) and support function estimation $(d \geq 6)^{5}$

LSE Reconstruction of the function $y=\|x\|_{2}$ from $n=20,50,200$ noisy measurements

[^4]
Polyhedral Regression

- f is \mathbf{m}-polyhedral if $f(x)=\max _{i=1, \ldots, m}\left\{\left\langle a_{i}, x\right\rangle+b_{i}\right\}$
- Constrain LSE over m-polyhedral functions

$$
\hat{f}_{n} \in \operatorname{argmin}_{g: \mathbb{R}^{d} \rightarrow \mathbb{R}} \text { is } m \text {-polyhedral } \frac{1}{n} \sum_{i=1}^{n}\left(g\left(x_{i}\right)-y_{i}\right)^{2}
$$

[^5]
Polyhedral Regression

- f is \mathbf{m}-polyhedral if $f(x)=\max _{i=1, \ldots, m}\left\{\left\langle a_{i}, x\right\rangle+b_{i}\right\}$
- Constrain LSE over m-polyhedral functions

$$
\hat{f}_{n} \in \operatorname{argmin}_{g: \mathbb{R}^{d} \rightarrow \mathbb{R}} \text { is } m \text {-polyhedral } \frac{1}{n} \sum_{i=1}^{n}\left(g\left(x_{i}\right)-y_{i}\right)^{2}
$$

- Obtains minimax rates ${ }^{6}$

[^6]
Polyhedral Regression

- f is \mathbf{m}-polyhedral if $f(x)=\max _{i=1, \ldots, m}\left\{\left\langle a_{i}, x\right\rangle+b_{i}\right\}$
- Constrain LSE over m-polyhedral functions

$$
\hat{f}_{n} \in \operatorname{argmin}_{g: \mathbb{R}^{d} \rightarrow \mathbb{R}} \text { is } m \text {-polyhedral } \frac{1}{n} \sum_{i=1}^{n}\left(g\left(x_{i}\right)-y_{i}\right)^{2}
$$

- Obtains minimax rates ${ }^{6}$
- Tractable methods for computing estimator ${ }^{7}$

[^7]
Polyhedral Regression

- f is \mathbf{m}-polyhedral if $f(x)=\max _{i=1, \ldots, m}\left\{\left\langle a_{i}, x\right\rangle+b_{i}\right\}$
- Constrain LSE over m-polyhedral functions

$$
\hat{f}_{n} \in \operatorname{argmin}_{g: \mathbb{R}^{d} \rightarrow \mathbb{R}} \text { is } m \text {-polyhedral } \frac{1}{n} \sum_{i=1}^{n}\left(g\left(x_{i}\right)-y_{i}\right)^{2}
$$

- Obtains minimax rates ${ }^{6}$
- Tractable methods for computing estimator ${ }^{7}$

- Drawback: polyhedral approximations of non-polyhedral functions and sets

[^8]
Spectrahedral Regression [O. \& Chandrasekaran, '22]

- $\mathbb{S}^{m}: m \times m$ real symmetric matrices
- A function f is \mathbf{m}-spectrahedral if for some $A_{0}, \ldots, A_{d} \in \mathbb{S}^{m}$,

$$
f(x)=\lambda_{\max }\left(\sum_{i=1}^{d} x_{i} A_{i}+A_{0}\right)
$$

- Constrain LSE over m-spectrahedral functions

$$
\hat{f}_{n} \in \operatorname{argmin}_{g: \mathbb{R}^{d} \rightarrow \mathbb{R}} \text { is } m \text {-spectrahedral } \frac{1}{n} \sum_{i=1}^{n}\left(g\left(x_{i}\right)-y_{i}\right)^{2}
$$

Spectrahedral Regression [O. \& Chandrasekaran, '22]

- $\mathbb{S}^{m}: m \times m$ real symmetric matrices
- A function f is \mathbf{m}-spectrahedral if for some $A_{0}, \ldots, A_{d} \in \mathbb{S}^{m}$,

$$
f(x)=\lambda_{\max }\left(\sum_{i=1}^{d} x_{i} A_{i}+A_{0}\right)
$$

- Constrain LSE over m-spectrahedral functions

$$
\hat{f}_{n} \in \operatorname{argmin}_{g: \mathbb{R}^{d} \rightarrow \mathbb{R}} \text { is } m \text {-spectrahedral } \frac{1}{n} \sum_{i=1}^{n}\left(g\left(x_{i}\right)-y_{i}\right)^{2}
$$

Spectrahedral Regression [O. \& Chandrasekaran, '22]

- $\mathbb{S}^{m}: m \times m$ real symmetric matrices
- A function f is \mathbf{m}-spectrahedral if for some $A_{0}, \ldots, A_{d} \in \mathbb{S}^{m}$,

$$
f(x)=\lambda_{\max }\left(\sum_{i=1}^{d} x_{i} A_{i}+A_{0}\right)
$$

- Constrain LSE over m-spectrahedral functions

$$
\hat{f}_{n} \in \operatorname{argmin}_{g: \mathbb{R}^{d} \rightarrow \mathbb{R}} \text { is } m \text {-spectrahedral } \frac{1}{n} \sum_{i=1}^{n}\left(g\left(x_{i}\right)-y_{i}\right)^{2}
$$

Linear \rightarrow Semidefinite programming

Can optimize m-polyhedral function

$$
f(x)=\max _{i=1, \ldots, m}\left\{\left\langle a_{i}, x\right\rangle+b_{i}\right\}
$$

using linear programming

- $\left\{(x, y) \in \mathbb{R}^{d+1}: f(x) \leq y\right\}$ is a polyhedron

$$
\left\{(x, y) \in \mathbb{R}^{d+1}: 0 \leq y-\left\langle a_{i}, x\right\rangle-b_{i}, i=1, \ldots, m\right\}
$$

Linear \rightarrow Semidefinite programming

Can optimize m-polyhedral function

$$
f(x)=\max _{i=1, \ldots, m}\left\{\left\langle a_{i}, x\right\rangle+b_{i}\right\}
$$

using linear programming

- $\left\{(x, y) \in \mathbb{R}^{d+1}: f(x) \leq y\right\}$ is a polyhedron

$$
\left\{(x, y) \in \mathbb{R}^{d+1}: 0 \leq y-\left\langle a_{i}, x\right\rangle-b_{i}, i=1, \ldots, m\right\}
$$

Can optimize m-spectrahedral function $f(x)=\lambda_{\max }\left(\sum_{i=1}^{d} x_{i} A_{i}+A_{0}\right)$ using semidefinite programming

- $\left\{(x, y) \in \mathbb{R}^{d+1}: f(x) \leq y\right\}$ is a spectrahedron

$$
\left\{(x, y) \in \mathbb{R}^{d+1}: 0 \preccurlyeq y l-\sum_{i=1}^{d} x_{i} A_{i}-A_{0}\right\}
$$

Spectrahedral Regression: Average Weekly Wages

Data set: 1988 Current Population Survey: 25,361 records of weekly wages with (i) Experience (ii) Education

Figure: Spectrahedral $(m=3)$ and Polyhedral $(m=6)$ estimators of average weekly wages versus years experience and education

Spectrahedral Regression: Aircraft Design

Data set: XFOIL simulated data of airplane wing profile drag coefficient as a function of the Reynolds number and lift coefficient

Figure: Spectrahedral $(m=3)$ and Polyhedral $(m=6)$ estimators

Support Function Estimation [Soh \& Chandrasekaran, 21]

- Polyhedral regression \rightarrow Constrain LSE over polytopes with m vertices:

Figure: $m=6, m=12$ polytope, and LSE reconstructions of the unit ℓ_{1}-ball from 200 noisy support function measurements

Support Function Estimation [Soh \& Chandrasekaran, 21]

- Polyhedral regression \rightarrow Constrain LSE over polytopes with m vertices:

Figure: $m=6, m=12$ polytope, and LSE reconstructions of the unit ℓ_{1}-ball from 200 noisy support function measurements

- Spectrahedral regression \rightarrow Constrain LSE over m-spectratopes
- m-spectratopes are linear images of an m-dimensional spectroplex:

$$
\left\{X \in \mathbb{S}^{m}: X \succeq 0,\langle X, I\rangle=1\right\}
$$

Figure: $m=3$ spectratope and LSE reconstructions of ℓ_{2}-ball from 50 noisy support function measurements

Support Function Estimation: Lung Reconstruction

(a) $n=50$, LSE

(b) $n=50, m=3$

Figure: LSE and m-spectrahedral $(m=3)$ lung reconstruction ${ }^{8}$

[^9]
Block Spectrahedral Regression

- f is (\mathbf{m}, \mathbf{k})-spectrahedral if $f(x)=\lambda_{\text {max }}\left(\sum_{i=1}^{d} x_{i} A_{i}+A_{0}\right)$ where $A_{0}, \ldots, A_{d} \in \mathbb{S}_{k}^{m}$ are block-diagonal with blocks of size k

Block Spectrahedral Regression

- f is (\mathbf{m}, \mathbf{k})-spectrahedral if $f(x)=\lambda_{\text {max }}\left(\sum_{i=1}^{d} x_{i} A_{i}+A_{0}\right)$ where $A_{0}, \ldots, A_{d} \in \mathbb{S}_{k}^{m}$ are block-diagonal with blocks of size k

Figure: Polyhedral $(m, k)=(6,1)$, block spectrahedral $(m, k)=(4,2)$, and spectrahedral $m=3$ reconstructions of $y=\|x\|_{2}$.

Block Spectrahedral Regression

- f is (\mathbf{m}, \mathbf{k})-spectrahedral if $f(x)=\lambda_{\text {max }}\left(\sum_{i=1}^{d} x_{i} A_{i}+A_{0}\right)$ where $A_{0}, \ldots, A_{d} \in \mathbb{S}_{k}^{m}$ are block-diagonal with blocks of size k

$\mathrm{n}=50$

$\mathrm{n}=50$

Figure: Polyhedral $(m, k)=(6,1)$, block spectrahedral $(m, k)=(4,2)$, and spectrahedral $m=3$ reconstructions of $y=\exp (\langle x, b\rangle)$.

Questions

1. How do you compute the spectrahedral estimator?
2. What is the expressive power of spectrahedral functions?

Questions

1. How do you compute the spectrahedral estimator?

2. What is the expressive power of spectrahedral functions?

Alternating Minimization

- For $\mathcal{A}=\left(A_{0}, \ldots, A_{d}\right) \in\left(\mathbb{S}_{k}^{m}\right)^{d+1}$, define $\mathcal{A}[\xi]=\sum_{j=0}^{d} \xi_{j} A_{j}$
- Let $\xi^{(i)}=\left(x^{(i)}, 1\right) \in \mathbb{R}^{d+1}$. Want to compute:

$$
\hat{\mathcal{A}} \in \operatorname{argmin}_{\mathcal{A} \in\left(\mathbb{S}_{k}^{m}\right)^{d+1}} \frac{1}{n} \sum_{i=1}^{n}\left[y^{(i)}-\lambda_{\max }\left(\mathcal{A}\left[\xi^{(i)}\right]\right)\right]^{2},
$$

Alternating Minimization

- For $\mathcal{A}=\left(A_{0}, \ldots, A_{d}\right) \in\left(\mathbb{S}_{k}^{m}\right)^{d+1}$, define $\mathcal{A}[\xi]=\sum_{j=0}^{d} \xi_{j} A_{j}$
- Let $\xi^{(i)}=\left(x^{(i)}, 1\right) \in \mathbb{R}^{d+1}$. Want to compute:

$$
\hat{\mathcal{A}} \in \operatorname{argmin}_{\mathcal{A} \in\left(S_{k}^{m}\right)^{d+1}} \frac{1}{n} \sum_{i=1}^{n}\left[y^{(i)}-\lambda_{\max }\left(\mathcal{A}\left[\xi^{(i)}\right]\right)\right]^{2},
$$

Input: Data collection $\left\{\left(x^{(i)}, y^{(i)}\right)\right\}_{i=1}^{n}$; initialization $\mathcal{A} \in\left(\mathbb{S}_{k}^{m}\right)^{d+1}$ Algorithm: Repeat until convergence

- Step 1: Update optimal eigenvectors $u^{(i)} \leftarrow \lambda_{\max }\left(\mathcal{A}\left[\xi^{(i)}\right]\right)$
- Step 2: Update \mathcal{A} by solving

$$
\operatorname{argmin}_{\mathcal{A} \in\left(\mathbb{S}_{k}^{m}\right)^{d+1}} \frac{1}{n} \sum_{i=1}^{n}\left(y^{(i)}-\left\langle u^{(i)}, \mathcal{A}\left[\xi^{(i)}\right]\right\rangle\right)^{2},
$$

i.e. $\mathcal{A}^{+} \leftarrow\left(\Xi_{\mathcal{A}}^{\top} \bar{\Xi}_{\mathcal{A}}\right)^{-1} \Xi_{\mathcal{A}}^{\top} y$, where $\Xi_{\mathcal{A}}^{\top}=\left(\xi^{(1)} \otimes u^{(1)}|\cdots| \xi^{(n)} \otimes u^{(n)}\right)$

Output: Final iterate \mathcal{A}

Local Convergence Guarantee for AM

Assumption: $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$ i.i.d. samples from $(X, Y) \in \mathbb{R}^{d} \times \mathbb{R}$ such that

$$
X \sim \mathcal{N}(0, \mathcal{I}), \quad Y=\lambda_{\max }\left(\mathcal{A}_{*}[\xi]\right)+\varepsilon, \quad \xi=(X, 1), \quad \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

Local Convergence Guarantee for AM

Assumption: $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$ i.i.d. samples from $(X, Y) \in \mathbb{R}^{d} \times \mathbb{R}$ such that

$$
X \sim \mathcal{N}(0, \mathcal{I}), \quad Y=\lambda_{\max }\left(\mathcal{A}_{*}[\xi]\right)+\varepsilon, \quad \xi=(X, 1), \quad \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

Suppose that the true parameter $\mathcal{A}_{*} \in\left(\mathbb{S}_{k}^{m}\right)^{d+1}$ satisfies:

$$
\inf _{u \in \mathbb{S}^{d}} \lambda_{1}\left(\mathcal{A}_{*}[u]\right)-\lambda_{2}\left(\mathcal{A}_{*}[u]\right):=\kappa>0
$$

Local Convergence Guarantee for AM

Assumption: $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$ i.i.d. samples from $(X, Y) \in \mathbb{R}^{d} \times \mathbb{R}$ such that

$$
X \sim \mathcal{N}(0, \mathcal{I}), \quad Y=\lambda_{\max }\left(\mathcal{A}_{*}[\xi]\right)+\varepsilon, \quad \xi=(X, 1), \quad \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

Suppose that the true parameter $\mathcal{A}_{*} \in\left(\mathbb{S}_{k}^{m}\right)^{d+1}$ satisfies:

$$
\inf _{u \in \mathbb{S}^{d}} \lambda_{1}\left(\mathcal{A}_{*}[u]\right)-\lambda_{2}\left(\mathcal{A}_{*}[u]\right):=\kappa>0
$$

Theorem (O. and Chandrasekaran)

If the initial parameter $\mathcal{A}^{(0)}$ satisfies

$$
\left\|\mathcal{A}^{(0)}-\mathcal{A}_{*}\right\|_{F}^{2} \leq \frac{c_{1} \kappa^{2}}{(d+1) m}
$$

and n is large enough, then the error at all iterations $t \geq 1$ simultaneously satisfies

$$
\left\|\mathcal{A}^{(t)}-\mathcal{A}_{*}\right\|_{F}^{2} \leq\left(\frac{3}{4}\right)^{t}\left\|\mathcal{A}^{(0)}-\mathcal{A}_{*}\right\|_{F}^{2}+\frac{c_{2} m^{3}(d+1) \sigma^{2} \log (n)^{2}}{n}
$$

with high probability, where c_{1} and c_{2} are absolute constants.

Local Convergence Guarantee for AM (Version 2)

Assumption: $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$ i.i.d. samples from $(X, Y) \in \mathbb{R}^{d} \times \mathbb{R}$ such that

$$
\|X\|_{\infty} \leq \eta, \quad Y=\lambda_{\max }\left(\mathcal{A}_{*}[\xi]\right)+\varepsilon, \quad \xi=(X, 1), \quad \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

Local Convergence Guarantee for AM (Version 2)

Assumption: $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$ i.i.d. samples from $(X, Y) \in \mathbb{R}^{d} \times \mathbb{R}$ such that

$$
\begin{gathered}
\|X\|_{\infty} \leq \eta, \quad Y=\lambda_{\max }\left(\mathcal{A}_{*}[\xi]\right)+\varepsilon, \quad \xi=(X, 1), \quad \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right) \\
\mathcal{A}_{*}[\xi]=\left[\begin{array}{ccc}
\mathcal{A}_{*}^{(1)}[\xi] & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \mathcal{A}_{*}^{(m / k)}[\xi]
\end{array}\right]
\end{gathered}
$$

Local Convergence Guarantee for AM (Version 2)

Assumption: $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$ i.i.d. samples from $(X, Y) \in \mathbb{R}^{d} \times \mathbb{R}$ such that

$$
\begin{gathered}
\|X\|_{\infty} \leq \eta, \quad Y=\lambda_{\max }\left(\mathcal{A}_{*}[\xi]\right)+\varepsilon, \quad \xi=(X, 1), \quad \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right) \\
\mathcal{A}_{*}[\xi]=\left[\begin{array}{ccc}
\mathcal{A}_{*}^{(1)}[\xi] & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \mathcal{A}_{*}^{(m / k)}[\xi]
\end{array}\right]
\end{gathered}
$$

- There exists $\kappa>0$ and $\delta \in(0,1)$ such that for all $j, \ell \in\{1, \ldots, m / k\}$,

$$
\inf _{j \neq \ell} \mathbb{E}\left[\left|\lambda_{1}\left(\mathcal{A}_{*}^{(j)}[\xi]\right)-\lambda_{1}\left(\mathcal{A}_{*}^{(\ell)}[\xi]\right)\right|\right] \geq \frac{m \kappa}{k \delta} .
$$

and if $k \geq 2$, for all $j \in\{1, \ldots, m / k\}$

$$
\inf _{j=1, \ldots, m / k} \inf _{u \in \mathbb{S}^{d}} \lambda_{1}\left(\mathcal{A}_{*}^{(j)}[u]\right)-\lambda_{2}\left(\mathcal{A}_{*}^{(j)}[u]\right):=\kappa>0 .
$$

Local Convergence Guarantee for AM (Version 2)

Assumption: $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$ i.i.d. samples from $(X, Y) \in \mathbb{R}^{d} \times \mathbb{R}$ such that

$$
\begin{gathered}
\|X\|_{\infty} \leq \eta, \quad Y=\lambda_{\max }\left(\mathcal{A}_{*}[\xi]\right)+\varepsilon, \quad \xi=(X, 1), \quad \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right) \\
\mathcal{A}_{*}[\xi]=\left[\begin{array}{ccc}
\mathcal{A}_{*}^{(1)}[\xi] & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \mathcal{A}_{*}^{(m / k)}[\xi]
\end{array}\right]
\end{gathered}
$$

- There exists $\kappa>0$ and $\delta \in(0,1)$ such that for all $j, \ell \in\{1, \ldots, m / k\}$,

$$
\inf _{j \neq \ell} \mathbb{E}\left[\left|\lambda_{1}\left(\mathcal{A}_{*}^{(j)}[\xi]\right)-\lambda_{1}\left(\mathcal{A}_{*}^{(\ell)}[\xi]\right)\right|\right] \geq \frac{m \kappa}{k \delta} .
$$

and if $k \geq 2$, for all $j \in\{1, \ldots, m / k\}$

$$
\inf _{j=1, \ldots, m / k} \inf _{u \in \mathbb{S}^{d}} \lambda_{1}\left(\mathcal{A}_{*}^{(j)}[u]\right)-\lambda_{2}\left(\mathcal{A}_{*}^{(j)}[u]\right):=\kappa>0 .
$$

- Assume that there is a constant $c>0$ such that for all $\mathcal{A} \neq \mathcal{B} \in\left(\mathbb{S}^{k}\right)^{d+1}$, $\mathbb{P}\left(\left|\lambda_{1}(\mathcal{A}[\xi])-\lambda_{1}(\mathcal{B}[\xi])\right| \leq \rho \mathbb{E}\left[\left|\lambda_{1}(\mathcal{A}[\xi])-\lambda_{1}(\mathcal{B}[\xi])\right|\right]\right) \leq c \rho, \quad$ for all $\rho>0$.

Local Convergence Guarantee for AM (Version 2)

Theorem (O. and Chandrasekaran)

If the initial parameter choice \mathcal{A}_{0} satisfies

$$
\left\|\mathcal{A}^{(0)}-\mathcal{A}_{*}\right\|_{F}^{2} \leq \frac{c_{1} \kappa^{2} k^{3}}{(d+1)^{3} m^{5}}
$$

and n is large enough, then the error at all iterations $t \geq 1$ simultaneously satisfies

$$
\left\|\mathcal{A}^{(t)}-\mathcal{A}_{*}\right\|_{F}^{2} \leq\left(\frac{3}{4}\right)^{t}\left\|\mathcal{A}^{(0)}-\mathcal{A}_{*}\right\|_{F}^{2}+\frac{c_{2} m^{3}(d+1) \sigma^{2} \log (n)^{2}}{n},
$$

with probability $\rightarrow 1-3 \delta$ as $n \rightarrow \infty$.

Questions

1. How do you compute the spectrahedral estimator?
2. What is the expressive power of spectrahedral functions?

Expressiveness of Spectrahedral Functions

How well do (m, k)-spectrahedral functions approximate Lipschitz convex functions?

- A result of Dudley (1974) implies that for polyhedral functions,

$$
\sup _{f: \Omega \rightarrow \mathbb{R} \text { convex }} \inf _{g \text { is } m \text {-polyhedral }}\|g-f\|_{\infty}=O\left(m^{-\frac{2}{d}}\right)
$$

Expressiveness of Spectrahedral Functions

How well do (m, k)-spectrahedral functions approximate Lipschitz convex functions?

- A result of Dudley (1974) implies that for polyhedral functions,

$$
\sup _{\substack{f: \Omega \rightarrow \mathbb{R} \text { convex } \\ \text { and L-Lipschitz }}} \inf _{m \text { is }} \text {-polyhedral }\|g-f\|_{\infty}=O\left(m^{-\frac{2}{d}}\right)
$$

Theorem (O. and Chandrasekaran)

Suppose $k_{m}=O\left(m^{t}\right)$ for $t \in[0,1]$. For all $\varepsilon>0$,

$$
O\left(m^{-\frac{2(1+t)}{d}-\varepsilon}\right) \leq \sup _{\substack{f: \Omega \rightarrow \mathbb{R} \text { convex } \\ \text { and } L-L i p s c h i t z}} \inf _{\text {is }\left(m, k_{m}\right) \text {-spectrahedral }}\|g-f\|_{\infty} \leq O\left(m^{-\frac{2}{d}}\right)
$$

- For constant k, approximation rate is same as for m-polyhedral functions

Proof Idea: Use Statistical Risk Bound

- Define

$$
\hat{f}_{m, k}^{(n)} \in \operatorname{argmin}_{g \text { is }(m, k) \text {-spectrahedral }} \frac{1}{n} \sum_{i=1}^{n}\left(g\left(x_{i}\right)-y_{i}\right)^{2},
$$

where $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$ are i.i.d. samples of a random pair $(X, Y) \in \mathbb{R}^{d} \times \mathbb{R}$ s.t.

$$
Y=f(X)+\varepsilon
$$

Theorem (O. and Chandrasekaran)

$$
\left.\mathbb{E}\left[\hat{f}_{m, k}^{(n)}(X)-f(X)\right)^{2}\right] \leq O\left(\inf _{g i s(m, k) \text { spectrahedral }}\|g-f\|_{\infty}^{2}+\frac{k m \log (n)}{n}\right)
$$

- Minimax rate for class of convex and L-Lipschitz functions ${ }^{9}$ implies

$$
\begin{aligned}
& \left.\sup _{\substack{ \\
f: \Omega \rightarrow \mathbb{R} \text { convex } \\
\text { and } L-L i p s c h i t z ~}} \mathbb{E}\left[\left(\hat{f}_{m, k}^{(n)}(X)-f(X)\right)^{2}\right] \geq O\left(n^{-\frac{4}{d+4}}\right)\right)
\end{aligned}
$$

[^10]
Summary

- Spectrahedral regression is a new approach for fitting convex functions to data that generalizes polyhedral regression
- Returns convex estimators that exhibit both smooth and singular features
- Expressiveness of spectrahedral functions has implications for how well semidefinite relaxations approximate general convex optimization
- Empirical evidence: m-spectrahedral regression performs comparably to $m(m+1) / 2$-polyhedral regression

Future Work

- Guidance for parameter selection and tuning
- Computational Guarantees: initialization, extend other approaches for polyhedral regression
- Approximation power of (m, k)-spectrahedral functions
- Other shape-constrained regression, density estimation applications

Thank you!

Questions?

[^0]: ${ }^{1}$ [Afriat, 1967; Varian, 1982, 1984; Hannah and Dunson, 2013]
 ${ }^{2}$ [Hannah and Dunson, 2012; Hoburg and Abbeel, 2014]

[^1]: ${ }^{3}$ [Lele, Kulkani, and Willsky, 1992; Gregor and Rannou, 2002; Prince and Willsky, 1990]

[^2]: ${ }^{4}$ [Prince and Willsky, 1990; Seijo and Sen, 2011]

[^3]: ${ }^{4}$ [Prince and Willsky, 1990; Seijo and Sen, 2011]

[^4]: ${ }^{5}$ [Guntaboyina, 2012; Kur, Gao, Guntuboyina, and Sen, 2020; Kur, Rakhlin, and Guntuboyina, 2020]

[^5]: ${ }^{6}$ [Guntaboyina, 2012; Han and Wellner, 2016]
 ${ }^{7}$ [Magnani and Boyd, 2009; Hannah and Dunson, 2013; Balazs et al, 2015; Ghosh et al., 2020]

[^6]: ${ }^{6}$ [Guntaboyina, 2012; Han and Wellner, 2016]
 ${ }^{7}$ [Magnani and Boyd, 2009; Hannah and Dunson, 2013; Balazs et al, 2015; Ghosh et al., 2020]

[^7]: ${ }^{6}$ [Guntaboyina, 2012; Han and Wellner, 2016]
 ${ }^{7}$ [Magnani and Boyd, 2009; Hannah and Dunson, 2013; Balazs et al, 2015; Ghosh et al., 2020]

[^8]: ${ }^{6}$ [Guntaboyina, 2012; Han and Wellner, 2016]
 ${ }^{7}$ [Magnani and Boyd, 2009; Hannah and Dunson, 2013; Balazs et al, 2015; Ghosh et al., 2020]

[^9]: ${ }^{8}$ [Soh and Chandrasekaran, 2021]

[^10]: ${ }^{9}$ [Balázs, György, and Szepesvári, 2015]

