Random Monomial Ideals and their Free Resolutions

Serkan Hoșten
Mathematics Department
San Francisco State University

18 April 2023

Joint Work

joint work with

Jesús A. De Loera, Robert Krone and Lily Silverstein

Motivating Question

What is the projective dimension of a "random" monomial ideal in $S=k\left[x_{1}, \ldots, x_{n}\right]$?

Motivating Question

What is the projective dimension of a "random" monomial ideal in $S=k\left[x_{1}, \ldots, x_{n}\right]$?

By Hilbert's Syzygy Theorem at most n.

Motivating Question

What is the projective dimension of a "random" monomial ideal in $S=k\left[x_{1}, \ldots, x_{n}\right]$?

By Hilbert's Syzygy Theorem at most n.

Folklore: As long as it can be !

Erdős-Rényi-type Model for Random Monomial Ideals

Pioneered by De Loera-Petrović-Silverstein-Stasi-Wilburne in "Random Monomial Ideals" [2017]:

- fix positive integer D;
- sample a generating set G

$$
\mathbb{P}\left[x^{\alpha} \in G\right]= \begin{cases}p & |\alpha| \leq D \\ 0 & \text { otherwise }\end{cases}
$$

for all $x^{\alpha} \in S=k\left[x_{1}, \ldots, x_{n}\right]$, and set $M=\langle G\rangle$.

Erdős-Rényi-type Model for Random Monomial Ideals

Pioneered by De Loera-Petrović-Silverstein-Stasi-Wilburne in "Random Monomial Ideals" [2017]:

- fix positive integer D;
- sample a generating set G

$$
\mathbb{P}\left[x^{\alpha} \in G\right]= \begin{cases}p & |\alpha| \leq D \\ 0 & \text { otherwise }\end{cases}
$$

for all $x^{\alpha} \in S=k\left[x_{1}, \ldots, x_{n}\right]$, and set $M=\langle G\rangle$.

- inspired by the Erdős-Rényi model for generating random graphs;
- if restricted to squarefree monomials, it will yield a random simplicial complex.

Threshold Behavior for Dimension

```
Theorem (DPSSW)
If D}\mp@subsup{D}{}{-(t+1)}<<p=p(D)<<\mp@subsup{D}{}{-t}\mathrm{ as }D->\infty\mathrm{ , then }\operatorname{dim}(S/M)= asymptotically almost surely.
```


Threshold Behavior for Dimension

Theorem (DPSSW)

If $D^{-(t+1)} \ll p=p(D) \ll D^{-t}$ as $D \rightarrow \infty$, then $\operatorname{dim}(S / M)=t$ asymptotically almost surely.

Other Work

- random flag complexes and their syzygies [Erman-Yang '17]
- characteristic dependence of syzygies of random monomial ideals [Booms-Erman-Yang '20]
- asymptotic degree of random monomial ideals [Silverstein-Wilburne-Yang '20]
- edge ideals of random graphs [Banerjee-Yogeshwaran '21]

Our Random Generation Model

- Random monomial ideals in n variables,

Our Random Generation Model

- Random monomial ideals in n variables,
- minimally generated in a single degree D,

Our Random Generation Model

- Random monomial ideals in n variables,
- minimally generated in a single degree D,
- where $\mathbb{P}\left[x^{\alpha}\right]=p$ to be a minimal generator.

Our Random Generation Model

- Random monomial ideals in n variables,
- minimally generated in a single degree D,
- where $\mathbb{P}\left[x^{\alpha}\right]=p$ to be a minimal generator.

Sample a minimal generating set G with

$$
\mathbb{P}\left[x^{\alpha} \in G\right]= \begin{cases}p & |\alpha|=D \\ 0 & \text { otherwise }\end{cases}
$$

for all $x^{\alpha} \in S=k\left[x_{1}, \ldots, x_{n}\right]$, and set $M=\langle G\rangle$.

Our Random Generation Model

- Random monomial ideals in n variables,
- minimally generated in a single degree D,
- where $\mathbb{P}\left[x^{\alpha}\right]=p$ to be a minimal generator.

Sample a minimal generating set G with

$$
\mathbb{P}\left[x^{\alpha} \in G\right]= \begin{cases}p & |\alpha|=D \\ 0 & \text { otherwise }\end{cases}
$$

for all $x^{\alpha} \in S=k\left[x_{1}, \ldots, x_{n}\right]$, and set $M=\langle G\rangle$.
$M \sim \mathcal{M}(n, D, p)$.

Most resolutions are as long as possible

Theorem
 Let $M \sim \mathcal{M}(n, D, p)$ and $p=p(D)$. As $D \rightarrow \infty, p=D^{-n+1}$ is a threshold for the projective dimension of S / M. If $p \ll D^{-n+1}$ then $\operatorname{pdim}(S / M)=0$ asymptotically almost surely and if $p \gg D^{-n+1}$ then $\operatorname{pdim}(S / M)=n$ asymptotically almost surely.

Most resolutions are as long as possible

Theorem
 Let $M \sim \mathcal{M}(n, D, p)$ and $p=p(D)$. As $D \rightarrow \infty, p=D^{-n+1}$ is a threshold for the projective dimension of S / M. If $p \ll D^{-n+1}$ then $\operatorname{pdim}(S / M)=0$ asymptotically almost surely and if $p \gg D^{-n+1}$ then $\operatorname{pdim}(S / M)=n$ asymptotically almost surely.

Corollary

If $D^{-n+1} \ll p \ll 1$, then asymptotically almost surely S / M is not
Cohen-Macaulay.

Witness Sets and Witness LCMs

Theorem (Alesandroni 2017)

Let $M=\langle G\rangle$. Then $\operatorname{pdim}(S / M)=n$ if and only if there is a subset L of G with the following properties:
(1) L is dominant.
(2) $|L|=n$.
(0) No element of G strongly divides $\operatorname{Icm}(L)$.

Witness Sets and Witness LCMs

Theorem (Alesandroni 2017)

Let $M=\langle G\rangle$. Then $\operatorname{pdim}(S / M)=n$ if and only if there is a subset L of G with the following properties:
(1) L is dominant.
(2) $|L|=n$.
(3) No element of G strongly divides $\operatorname{Icm}(L)$.

Definition

When L is as above then L witnesses $\operatorname{pdim}(S / M)=n$, and we say L is a witness set. The monomial $x^{\alpha} \in S$ is a witness lcm if L is a witness set and $x^{\alpha}=\operatorname{Icm}(L)$.

Witness Sets and Witness LCMs

(a) Δ_{α} associated with the
(b) x^{α} is a witness 1 cm . witness Icm
$x^{\alpha}=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} x_{3}^{\alpha_{3}}$

Outline of Proof

- $p \ll D^{-n+1}$:

$$
\lim _{D \rightarrow \infty} \mathbb{P}[\text { there is } \geq 1 \min \text { generator }] \leq \lim _{D \rightarrow \infty}\binom{D+n-1}{n-1} p=0
$$

Outline of Proof

- $p \ll D^{-n+1}$:

$$
\lim _{D \rightarrow \infty} \mathbb{P}[\text { there is } \geq 1 \text { min generator }] \leq \lim _{D \rightarrow \infty}\binom{D+n-1}{n-1} p=0
$$

- $p \gg D^{-n+1}$: First show

$$
\mathbb{E}\left[\sum_{\substack{a=n-1}}^{A} \sum_{\substack{|\alpha|=D+a \\ \alpha_{i} \geq a \forall i}} w_{\alpha}\right] \rightarrow \infty \text { as } D \rightarrow \infty
$$

Outline of Proof

- Then show $\operatorname{Var}[W]=o\left(\mathbb{E}[W]^{2}\right)$ and use Chebyshev's inequality

$$
\mathbb{P}[W=0] \leq \frac{\operatorname{Var}[W]}{\mathbb{E}[W]^{2}}
$$

Outline of Proof

- Then show $\operatorname{Var}[W]=o\left(\mathbb{E}[W]^{2}\right)$ and use Chebyshev's inequality

$$
\mathbb{P}[W=0] \leq \frac{\operatorname{Var}[W]}{\mathbb{E}[W]^{2}}
$$

- Hence, $\mathbb{P}[W>0] \rightarrow 1$, i.e., $M \sim \mathcal{M}(n, D, p)$ has at least one witness to $\operatorname{pdim}(S / M)=n$ with probability converging to 1 as $D \rightarrow \infty$.

Outline of Proof

- Then show $\operatorname{Var}[W]=o\left(\mathbb{E}[W]^{2}\right)$ and use Chebyshev's inequality

$$
\mathbb{P}[W=0] \leq \frac{\operatorname{Var}[W]}{\mathbb{E}[W]^{2}}
$$

- Hence, $\mathbb{P}[W>0] \rightarrow 1$, i.e., $M \sim \mathcal{M}(n, D, p)$ has at least one witness to $\operatorname{pdim}(S / M)=n$ with probability converging to 1 as $D \rightarrow \infty$.
- Non-Cohen-Macaulay-ness: M is almost never 0-dimensional.

Estimating Covariances $\operatorname{Cov}\left[w_{\alpha}, w_{\beta}\right]$

(a) $\operatorname{gcd}\left(x^{\alpha}, x^{\beta}\right)$ has degree $\leq D$, so $\operatorname{Cov}\left[w_{\alpha}, w_{\beta}\right]=0$.
(b) If $x^{\alpha} \mid x^{\beta}$ then
$\operatorname{Cov}\left[w_{\alpha}, w_{\beta}\right]<0$.

Scarfness and Genericity

- We say that M is Scarf if its Scarf complex gives a minimal free resolution of S / M.

Scarfness and Genericity

- We say that M is Scarf if its Scarf complex gives a minimal free resolution of S / M.

Theorem
If $p(D) \gg D^{-n+2-1 / n}$ then M is not Scarf asymptotically almost surely.

Scarfness and Genericity

- We say that M is Scarf if its Scarf complex gives a minimal free resolution of S / M.

Theorem
If $p(D) \gg D^{-n+2-1 / n}$ then M is not Scarf asymptotically almost surely.

Theorem

As $D \rightarrow \infty, p=D^{-n+3 / 2}$ is a threshold for M being generic and for M being strongly generic. If $p \ll D^{-n+3 / 2}$ then M is generic or strongly generic asymptotically almost surely, and if $p \gg D^{-n+3 / 2}$ then M is neither generic nor strongly generic asymptotically almost surely.

Scarfness and Genericity

(a) $n=4$

Generic and Scarf
Scarf but not genericNot Scarf

Ex. for $n=4, D=$ 10 , and $p=0.016$, 24% of random samples were generic, 50% were Scarf but not generic, and 26% were neither.

(b) $n=8$

Scarf but not generic

Scarf but not generic monomial ideals appear in the twilight zone $D^{-n+3 / 2} \ll p \ll D^{-n+2-1 / n}$.

Scarf but not generic

Scarf but not generic monomial ideals appear in the twilight zone $D^{-n+3 / 2} \ll p \ll D^{-n+2-1 / n}$.

Example

$I=\left\langle x_{1}^{4} x_{3} x_{5}^{5}, x_{1} x_{2}^{2} x_{3}^{2} x_{6}^{4} x_{8}, x_{2}^{3} x_{5}^{2} x_{6}^{3} x_{7} x_{8}, x_{1}^{3} x_{5}^{2} x_{7}^{2} x_{8}^{3}, x_{2} x_{3} x_{4}^{3} x_{6} x_{8} x_{9}^{3}\right.$, $x_{1} x_{3}^{4} x_{4} x_{6}^{2} x_{8} x_{10}, x_{1} x_{3} x_{4}^{2} x_{5} x_{6} x_{8}^{3} x_{10}, x_{2} x_{3} x_{6}^{3} x_{8}^{4} x_{10}, x_{4} x_{5}^{5} x_{7} x_{10}^{3}$, $\left.x_{1} x_{5}^{4} x_{10}^{5}\right\rangle \subseteq k\left[x_{1}, \ldots x_{10}\right]$, which has the following total Betti numbers:

$$
\begin{array}{c|ccccccccc}
i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\beta_{i} & 1 & 10 & 45 & 114 & 168 & 147 & 75 & 20 & 2
\end{array}
$$

