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Motivating Question

What is the projective dimension of a “random” monomial ideal in
S = k[x1, . . . , xn]?

By Hilbert’s Syzygy Theorem at most n.

Folklore: As long as it can be !
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Erdős-Rényi-type Model for Random Monomial Ideals

Pioneered by De Loera-Petrović-Silverstein-Stasi-Wilburne in “Random
Monomial Ideals” [2017]:

fix positive integer D;

sample a generating set G

P [xα ∈ G ] =

{
p |α| ≤ D

0 otherwise,

for all xα ∈ S = k[x1, . . . , xn], and set M = 〈G 〉.

inspired by the Erdős-Rényi model for generating random graphs;

if restricted to squarefree monomials, it will yield a random simplicial
complex.
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inspired by the Erdős-Rényi model for generating random graphs;

if restricted to squarefree monomials, it will yield a random simplicial
complex.
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Threshold Behavior for Dimension

Theorem (DPSSW)

If D−(t+1) � p = p(D)� D−t as D →∞, then dim(S/M) = t
asymptotically almost surely.

De Loera, Petrović, Silverstein, Stasi, Wilburne/Random monomial ideals 4

(B) The Krull dimension and random monomial ideals Section 3 is dedicated to a first
fundamental ring invariant: the Krull dimension dimS/I. By encoding the Krull dimension as the
transversal number of a certain hypergraph, we can show (see Theorem 3.1 for the precise statement)
that the probability that dim(S/I) is equal to t for 0 ≤ t ≤ n, for a random monomial ideal
I ∼ I(n,D, p), is given by a polynomial in p of degree

∑t+1
i=1

(
D
i

)(
n
i

)
. This formula is exponentially

large but we make it explicit in some interesting values of t (Theorem 3.2); which in particular give
a complete description of the case for two- and three-variable polynomials.

Turning to asymptotic behavior, we prove that the Krull dimension of (S/I) can be controlled by
bounding the asymptotic growth of the probability parameter p = p(D) as D → ∞. The evolution
of the Krull dimension in terms of p is illustrated in Figure 1. The result is obtained by combining
the family of threshold results from Theorem 3.4 and is stated in the following corollary:

Corollary 1.2. Let I ∼ I(n,D, p), n be fixed, and 0 ≤ t < n. If the parameter p = p(D) is such
that p = ω

(
D−(t+1)

)
and p = o

(
D−t

)
as D →∞, then dim(S/I) = t asymptotically almost surely.

It is very useful to consider the evolution – as the probability p increases from 0 to 1 – of the random
monomial ideal from the ER-type model and its random generating set B. For very small values of
p, B is all but guaranteed to be empty, and the random monomial ideal is asymptotically almost
surely the zero ideal. As p increases, the random monomial ideal evolves into a more complex ideal
generated in increasingly smaller degrees and support. Simultaneously, as the density of B continues
to increase with p, smaller-degree generators appear; these divide increasingly larger numbers of
monomials and the random ideal starts to become less complex as its minimal generators begin to
have smaller and smaller support, causing the Krull dimension to drop. Finally, the random ideal
becomes 0-dimensional and continues to evolve towards the maximal ideal.

n (zero ideal) n− 1 n− 2 · · · 1 0

p = D−n

|
p = D−(n−1)

|
p = D−(n−2)

|
p = D−2

|
p = D−1

|
p = 0
|

p = 1
|

Fig 1. Evolution of the Krull dimension of S/I, where I is the random monomial ideal I ∼ I(n,D, p), as the probability
parameter p = p(D) changes.

(C) First Betti numbers and random monomial ideals The ER-type model induces a dis-
tribution on the Betti numbers of the coordinate ring of random monomial ideals. To study this
distribution, we first ask: what are the first Betti numbers generated under the model? A natural
way to ‘understand’ a distribution is to compute its expected value, i.e., the average first Betti
number. In Theorem 4.1 we establish the asymptotic behavior for the expected number of minimal
generators in a random monomial ideal.

We also establish and quantify threshold behavior of first graded Betti numbers of random mono-
mial ideals I ∼ I(n,D, p) in two regimes, as n or D go to infinity, in Theorem 4.4. As in the Krull
dimension case, we combine the threshold results to obtain the following corollary:

Corollary 1.3. Let I ∼ I(n,D, p).

a) Let D be fixed, and d be a constant such that 1 < d ≤ D. If the parameter p = p(n) is such that
p(n) = ω

(
n−d

)
and p(n) = o

(
n−d+1

)
then initdeg(I) = d asymptotically almost surely.

b) Let n be fixed. Suppose that di = di(D), 1 ≤ di ≤ D and limD→∞ di(D) =∞ for i ∈ {1, 2}. If
the parameter p = p(D) is such that p(D) = ω

(
d1
−n) and p(D) = o

(
d2
−n) as D → ∞, then
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Other Work

random flag complexes and their syzygies [Erman-Yang ’17]

characteristic dependence of syzygies of random monomial ideals
[Booms-Erman-Yang ’20]

asymptotic degree of random monomial ideals
[Silverstein-Wilburne-Yang ’20]

edge ideals of random graphs [Banerjee-Yogeshwaran ’21]
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Our Random Generation Model

Random monomial ideals in n variables,

minimally generated in a single degree D,

where P [xα] = p to be a minimal generator.

Sample a minimal generating set G with

P [xα ∈ G ] =

{
p |α| = D

0 otherwise,

for all xα ∈ S = k[x1, . . . , xn], and set M = 〈G 〉.

M ∼M(n,D, p).
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Most resolutions are as long as possible

Theorem

Let M ∼M(n,D, p) and p = p(D). As D →∞, p = D−n+1 is a
threshold for the projective dimension of S/M. If p � D−n+1 then
pdim(S/M) = 0 asymptotically almost surely and if p � D−n+1 then
pdim(S/M) = n asymptotically almost surely.

Corollary

If D−n+1 � p � 1, then asymptotically almost surely S/M is not
Cohen-Macaulay.
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Witness Sets and Witness LCMs

Theorem (Alesandroni 2017)

Let M = 〈G 〉. Then pdim(S/M) = n if and only if there is a subset L of
G with the following properties:

1 L is dominant.

2 |L| = n.

3 No element of G strongly divides lcm(L).

Definition

When L is as above then L witnesses pdim(S/M) = n, and we say L is a
witness set. The monomial xα ∈ S is a witness lcm if L is a witness set
and xα = lcm(L).
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Witness Sets and Witness LCMs

x3 = α3

x2 = α2

x1 = α1

(a) ∆α associated with the
witness lcm
xα = xα1

1 xα2
2 xα3

3

× × ×
× ×
×

(b) xα is a witness lcm.
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Outline of Proof

p � D−n+1:

lim
D→∞

P [there is ≥ 1 min generator] ≤ lim
D→∞

(
D + n − 1

n − 1

)
p = 0,

p � D−n+1: First show

E




A∑

a=n−1

∑

|α|=D+a
αi≥a ∀i

wα


→∞ as D →∞
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Outline of Proof

Then show Var [W ] = o
(
E [W ]2

)
and use Chebyshev’s inequality

P [W = 0] ≤ Var [W ]

E [W ]2

Hence, P [W > 0]→ 1, i.e., M ∼M(n,D, p) has at least one witness
to pdim(S/M) = n with probability converging to 1 as D →∞.

Non-Cohen-Macaulay-ness: M is almost never 0-dimensional.
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Estimating Covariances Cov [wα,wβ]

(a) gcd(xα, xβ) has degree ≤ D, so Cov [wα,wβ ] = 0. (b) If xα|xβ then
Cov [wα,wβ ] < 0.
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Scarfness and Genericity

• We say that M is Scarf if its Scarf complex gives a minimal free
resolution of S/M.

Theorem

If p(D)� D−n+2−1/n then M is not Scarf asymptotically almost surely.

Theorem

As D →∞, p = D−n+3/2 is a threshold for M being generic and for M
being strongly generic. If p � D−n+3/2 then M is generic or strongly
generic asymptotically almost surely, and if p � D−n+3/2 then M is
neither generic nor strongly generic asymptotically almost surely.
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Scarfness and Genericity

.001 .002 .004 .008 .016 .031 .062 .125 .25 .5 1
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p
D

Generic and Scarf

Scarf but not generic

Not Scarf

50

2624

Ex. for n = 4, D =
10, and p = 0.016,
24% of random sam-
ples were generic,
50% were Scarf but
not generic, and 26%
were neither.
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(a) n = 4 (b) n = 8
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Scarf but not generic

Scarf but not generic monomial ideals appear in the twilight zone
D−n+3/2 � p � D−n+2−1/n.

Example

I = 〈x41x3x55 , x1x
2
2x

2
3x

4
6x8, x32x

2
5x

3
6x7x8, x31x

2
5x

2
7x

3
8 , x2x3x

3
4x6x8x

3
9 ,

x1x
4
3x4x

2
6x8x10, x1x3x

2
4x5x6x

3
8x10, x2x3x

3
6x

4
8x10, x4x

5
5x7x

3
10,

x1x
4
5x

5
10〉 ⊆ k[x1, . . . x10], which has the following total Betti numbers:

i 0 1 2 3 4 5 6 7 8
βi 1 10 45 114 168 147 75 20 2
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