Random Monomial Ideals and their Free Resolutions

Serkan Hoșten

Mathematics Department San Francisco State University

18 April 2023

joint work with

Jesús A. De Loera, Robert Krone and Lily Silverstein

æ

イロン イヨン イヨン イヨン

What is the projective dimension of a "random" monomial ideal in $S = k[x_1, \ldots, x_n]$?

臣

・ 回 ト ・ ヨ ト ・ ヨ ト

What is the projective dimension of a "random" monomial ideal in $S = k[x_1, \ldots, x_n]$?

By Hilbert's Syzygy Theorem at most n.

・ 回 ト ・ ヨ ト ・ ヨ ト

What is the projective dimension of a "random" monomial ideal in $S = k[x_1, \ldots, x_n]$?

By Hilbert's Syzygy Theorem at most n.

Folklore: As long as it can be !

Erdős-Rényi-type Model for Random Monomial Ideals

Pioneered by De Loera-Petrović-Silverstein-Stasi-Wilburne in "Random Monomial Ideals" [2017]:

- fix positive integer D;
- sample a generating set G

$$\mathbb{P}\left[x^{lpha}\in G
ight]=egin{cases}p&|lpha|\leq D\0& ext{otherwise}, \end{cases}$$

for all $x^{\alpha} \in S = k[x_1, \dots, x_n]$, and set $M = \langle G \rangle$.

Erdős-Rényi-type Model for Random Monomial Ideals

Pioneered by De Loera-Petrović-Silverstein-Stasi-Wilburne in "Random Monomial Ideals" [2017]:

- fix positive integer D;
- sample a generating set G

$$\mathbb{P}\left[x^{lpha}\in G
ight]=egin{cases}p&|lpha|\leq D\0& ext{otherwise}, \end{cases}$$

for all $x^{\alpha} \in S = k[x_1, \dots, x_n]$, and set $M = \langle G \rangle$.

- inspired by the Erdős-Rényi model for generating random graphs;
- if restricted to *squarefree* monomials, it will yield a random simplicial complex.

Theorem (DPSSW)

If $D^{-(t+1)} \ll p = p(D) \ll D^{-t}$ as $D \to \infty$, then dim(S/M) = t

asymptotically almost surely.

Theorem (DPSSW)

If
$$D^{-(t+1)} \ll p = p(D) \ll D^{-t}$$
 as $D \to \infty$, then dim $(S/M) = t$ asymptotically almost surely.

æ

イロト イヨト イヨト イヨト

- random flag complexes and their syzygies [Erman-Yang '17]
- characteristic dependence of syzygies of random monomial ideals [Booms-Erman-Yang '20]
- asymptotic degree of random monomial ideals [Silverstein-Wilburne-Yang '20]
- edge ideals of random graphs [Banerjee-Yogeshwaran '21]

• Random monomial ideals in *n* variables,

臣

・日・ ・ ヨ・ ・ ヨ・

Our Random Generation Model

- Random monomial ideals in *n* variables,
- minimally generated in a single degree D,

伺 ト イヨト イヨト

Our Random Generation Model

- Random monomial ideals in *n* variables,
- minimally generated in a single degree D,
- where $\mathbb{P}[x^{\alpha}] = p$ to be a minimal generator.

- Random monomial ideals in *n* variables,
- minimally generated in a single degree D,
- where $\mathbb{P}[x^{\alpha}] = p$ to be a minimal generator.

Sample a minimal generating set G with

$$\mathbb{P}\left[x^lpha \in {\sf G}
ight] = egin{cases} {\sf p} & |lpha| = D \ 0 & ext{otherwise}, \end{cases}$$

for all $x^{\alpha} \in S = k[x_1, \dots, x_n]$, and set $M = \langle G \rangle$.

- Random monomial ideals in *n* variables,
- minimally generated in a single degree D,
- where $\mathbb{P}[x^{\alpha}] = p$ to be a minimal generator.

Sample a minimal generating set G with

$$\mathbb{P}\left[x^lpha \in {\sf G}
ight] = egin{cases} {\sf p} & |lpha| = D \ 0 & ext{otherwise}, \end{cases}$$

for all $x^{\alpha} \in S = k[x_1, \dots, x_n]$, and set $M = \langle G \rangle$.

 $M \sim \mathcal{M}(n, D, p).$

Theorem

Let $M \sim \mathcal{M}(n, D, p)$ and p = p(D). As $D \to \infty$, $p = D^{-n+1}$ is a threshold for the projective dimension of S/M. If $p \ll D^{-n+1}$ then pdim(S/M) = 0 asymptotically almost surely and if $p \gg D^{-n+1}$ then pdim(S/M) = n asymptotically almost surely.

Theorem

Let $M \sim \mathcal{M}(n, D, p)$ and p = p(D). As $D \to \infty$, $p = D^{-n+1}$ is a threshold for the projective dimension of S/M. If $p \ll D^{-n+1}$ then pdim(S/M) = 0 asymptotically almost surely and if $p \gg D^{-n+1}$ then pdim(S/M) = n asymptotically almost surely.

Corollary

If $D^{-n+1} \ll p \ll 1$, then asymptotically almost surely S/M is not Cohen-Macaulay.

イロン イヨン イヨン

Theorem (Alesandroni 2017)

Let $M = \langle G \rangle$. Then pdim(S/M) = n if and only if there is a subset L of G with the following properties:

- L is dominant.
- **2** |L| = n.
- Solution No element of G strongly divides lcm(L).

Theorem (Alesandroni 2017)

Let $M = \langle G \rangle$. Then pdim(S/M) = n if and only if there is a subset L of G with the following properties:

- L is dominant.
- **2** |L| = n.

Solution No element of G strongly divides lcm(L).

Definition

When L is as above then L witnesses pdim(S/M) = n, and we say L is a *witness set*. The monomial $x^{\alpha} \in S$ is a *witness lcm* if L is a witness set and $x^{\alpha} = lcm(L)$.

Witness Sets and Witness LCMs

イロト イヨト イヨト イヨト 二日

• $p \ll D^{-n+1}$:

$$\lim_{D \to \infty} \mathbb{P}\left[\text{there is } \geq 1 \text{ min generator}\right] \leq \lim_{D \to \infty} \binom{D+n-1}{n-1} p = 0,$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

• $p \ll D^{-n+1}$:

$$\lim_{D\to\infty}\mathbb{P}\left[\text{there is }\geq 1 \text{ min generator}\right] \leq \lim_{D\to\infty}\binom{D+n-1}{n-1}p=0,$$

• $p \gg D^{-n+1}$: First show

$$\mathbb{E}\left[\sum_{\substack{a=n-1 \ |\alpha|=D+a \\ \alpha_i \ge a \ \forall i}}^{A} w_{\alpha}\right] \to \infty \text{ as } D \to \infty$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

• Then show $\operatorname{Var}[W] = o\left(\mathbb{E}[W]^2\right)$ and use Chebyshev's inequality

$$\mathbb{P}\left[W=0\right] \leq \frac{\operatorname{Var}\left[W\right]}{\mathbb{E}\left[W\right]^2}$$

æ

・ロト ・回ト ・ヨト ・ヨト

• Then show $\operatorname{Var}[W] = o\left(\mathbb{E}[W]^2\right)$ and use Chebyshev's inequality

$$\mathbb{P}\left[W=0
ight] \leq rac{\operatorname{\mathsf{Var}}\left[W
ight]}{\mathbb{E}\left[W
ight]^2}$$

Hence, P[W > 0] → 1, i.e., M ~ M(n, D, p) has at least one witness to pdim(S/M) = n with probability converging to 1 as D → ∞.

• Then show $\operatorname{Var}[W] = o\left(\mathbb{E}[W]^2\right)$ and use Chebyshev's inequality

$$\mathbb{P}\left[W=0
ight] \leq rac{\mathsf{Var}\left[W
ight]}{\mathbb{E}\left[W
ight]^2}$$

- Hence, P[W > 0] → 1, i.e., M ~ M(n, D, p) has at least one witness to pdim(S/M) = n with probability converging to 1 as D → ∞.
- Non-Cohen-Macaulay-ness: *M* is almost never 0-dimensional.

(4回) (4回) (日)

Estimating Covariances Cov $[w_{\alpha}, w_{\beta}]$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

• We say that M is Scarf if its Scarf complex gives a minimal free resolution of S/M.

<回と < 目と < 目と

• We say that M is Scarf if its Scarf complex gives a minimal free resolution of S/M.

Theorem

If $p(D) \gg D^{-n+2-1/n}$ then M is not Scarf asymptotically almost surely.

• We say that M is Scarf if its Scarf complex gives a minimal free resolution of S/M.

Theorem

If $p(D) \gg D^{-n+2-1/n}$ then M is not Scarf asymptotically almost surely.

Theorem

As $D \to \infty$, $p = D^{-n+3/2}$ is a threshold for M being generic and for M being strongly generic. If $p \ll D^{-n+3/2}$ then M is generic or strongly generic asymptotically almost surely, and if $p \gg D^{-n+3/2}$ then M is neither generic nor strongly generic asymptotically almost surely.

・ロト ・回ト ・ヨト ・ヨト

Scarfness and Genericity

Ð,

ヘロア 人間 アメヨア 人間 アー

Scarf but not generic monomial ideals appear in the twilight zone $D^{-n+3/2} \ll p \ll D^{-n+2-1/n}$.

臣

・ 回 ト ・ ヨ ト ・ ヨ ト

Scarf but not generic monomial ideals appear in the twilight zone $D^{-n+3/2} \ll p \ll D^{-n+2-1/n}$.

Example

 $I = \langle x_1^4 x_3 x_5^5, x_1 x_2^2 x_3^2 x_6^4 x_8, x_2^3 x_5^2 x_6^3 x_7 x_8, x_1^3 x_5^2 x_7^2 x_8^3, x_2 x_3 x_4^3 x_6 x_8 x_9^3, x_1 x_3^4 x_4 x_6^2 x_8 x_{10}, x_1 x_3 x_4^2 x_5 x_6 x_8^3 x_{10}, x_2 x_3 x_6^3 x_8^4 x_{10}, x_4 x_5^5 x_7 x_{10}^3, x_1 x_5^4 x_{10}^5 \rangle \subseteq k[x_1, \dots, x_{10}], \text{ which has the following total Betti numbers:}$

i	0	1	2	3	4	5	6	7	8
β_i	1	10	45	114	168	147	75	20	2

・ 「 ・ ・ こ ・ ・ こ ・ ・