

Random Algebraic Geometry at BIRS Samantha Fairchild, MPI MiS

ARXIV 2212.01596

Paul Breiding

University of Osnabrück

Pierpaola Santarsiero

Elima Shehu

University of Osnabrück

University of Osnabrück + MPI MiS

• $\mathscr{E} = \text{Essential Variety}$

• Degree is 10: $\# \mathscr{C} \cap L \leq 10$ for random linear space L

 $\mathbb{E}_{L\sim O(9)} \#(\mathscr{E} \cap L) = 4$

• $\mathscr{E} = \text{Essential Variety}$

• Degree is 10: $\#\mathscr{E} \cap L \leq 10$ for random linear space L

 $\mathbb{E}_{L\sim O(9)} \#(\mathscr{E} \cap L) = 4$

THE PLAN

- What is the Essential Variety?
- Using the Co-area formula to see $\mathbb{E}_{L \sim O(9)} #(\mathscr{E} \cap L) = 4$
- Experiments and bounds for the essential zonoid
- Further directions

WHAT IS ALGEBRAIC VISION?

(a) Input images (b) Image matching

(c) Reconstruct cameras and 3D points

(d) Output

Figure 1: 3D reconstruction pipeline (courtesy of Tomas Pajdla).

WHAT IS ALGEBRAIC VISION?

(a) Input images (b) Image matching

Figure 1: 3D reconstruction pipeline (courtesy of Tomas Pajdla).

Photo credit and more information see Kileel and Kohn Snapshot of Algebraic Vision

(c) Reconstruct cameras and 3D points

(d) Output

- Two pinhole cameras
- 5 point-correspondences

- Two pinhole cameras
- 5 point-correspondences
- **Goal**: reconstruct the relative position between the two cameras

- Two pinhole cameras
 - $C_1, C_2 : \mathbb{P}^3 \to \mathbb{P}^2$
 - $C_j \in \mathbb{R}^{3 \times 4}$, rank 3
 - Calibrated cameras: $C_j = [R, t]$ where $R \in SO(3), t \in \mathbb{R}^3$

- Two pinhole cameras
 - Since we are interested in the relative position: $C_1 = [I_3, \mathbf{0}]$ $C_2 = [R, \mathbf{t}]$

•
$$C_1 = [I_3, 0]$$
 $C_2 = [R, t]$

- 5 point correspondences (**u**, **v**)
 - $C_1 \mathbf{x} = \mathbf{u}$ $C_2 \mathbf{x} = \mathbf{v}$

THE ESSENTIAL VARIETY

• For a point correspondence $C_1 \mathbf{x} = \mathbf{u}$ $C_2 \mathbf{x} = \mathbf{v}$

• We can write $\mathbf{u}^T E \mathbf{v} = \mathbf{0}$

• Where Essential matrices are of the form $E = [\mathbf{t}]_{\times} R \quad \mathbf{t} \in \mathbb{R}^3, R \in SO(3)$

THE ESSENTIAL VARIETY

• $\mathscr{E} = \pi \left(\left\{ E \in \mathbb{R}^{3 \times 3} | E = [\mathbf{t}]_{\times} R \text{ and } R \in SO(3) \text{ and } \mathbf{t} \in \mathbb{R}^3 \right\} \right) \subset \mathbb{P}^8$

THE ESSENTIAL VARIETY

• $\mathscr{E} = \left\{ E = [\mathbf{t}]_{\times} R \right\} \subset \mathbb{P}^{8}$ • [Demazure '88] Dimension 5, degree 10 • Cut out by 10 cubic equations: $\det(E) = 0, \quad 2EE^{T}E - \operatorname{tr}(EE^{T})E = 0$

- $C_1 = [I_3, 0]$ $C_2 = [R, t]$
- 5 point correspondences $(\mathbf{u}_{j}, \mathbf{v}_{j})$

• $L = \{E \in \mathbb{P}^8 | \mathbf{u}_1^T E \mathbf{v}_1 = \dots = \mathbf{u}_5^T E \mathbf{v}_5 = 0\} \in G(3, \mathbb{P}^8)$

- The number of real solutions is
 - $#(\mathscr{E} \cap L) \in \{0, 2, 4, 6, 8, 10\}$

- $\mathscr{C} = \text{Essential Variety}$
- $L_0 \in G(3, \mathbb{P}^8)$ and $L \sim O(9)$ means that $L = U \cdot L_0$ for U uniform in O(9)

Theorem [Breiding—F.—Santarsiero—Shehu '22]

 $\mathbb{E}_{L\sim O(9)} \#(\mathscr{E} \cap L) = 4$

- $\mathscr{E} = \text{Essential Variety}$
- $L_0 \in G(3, \mathbb{P}^8)$ and $L \sim O(9)$ means that $L = U \cdot L_0$ for U uniform in O(9)

Proof (1) [Integral Geometry Formula (Howard '93)]

$\mathbb{E}_{L\sim O(9)} \#(\mathscr{E} \cap L) = \frac{\operatorname{vol}(\mathscr{E})}{\operatorname{vol}(\mathbb{P}^5)}$

- $\mathscr{E} = \text{Essential Variety}$
- $L_0 \in G(3, \mathbb{P}^8)$ and $L \sim O(9)$ means that $L = U \cdot L_0$ for U uniform in O(9)

Proof (1) [Integral Geometry Formula (Howard '93)]

suffices to show $vol(\mathscr{E}) = 4vol(\mathbb{P}^5)$

$\mathbb{E}_{L\sim O(9)} \#(\mathscr{E} \cap L) = \frac{\operatorname{vol}(\mathscr{E})}{\operatorname{vol}(\mathbb{P}^5)}$

Proof (2) [Coarea formula] suffices to show $vol(\mathscr{C}) = 4vol(\mathbb{P}^5)$ $\mathscr{C} = image\{(R, \mathbf{t}) \mapsto E\}$

$$\operatorname{vol}(\mathscr{C}) = \int_{SO(3)\times\mathbb{S}^2} \sqrt{\det(JJ^T)} \, dR \, d\mathbf{t},$$

where J is Jacobian of $(R, \mathbf{t}) \mapsto E$

$\{(1_3, \mathbf{e}_2), (1_3, \mathbf{e}_3), (F_{1,2}, \mathbf{e}_1), (F_{1,3}, \mathbf{e}_1), (F_{2,3}, \mathbf{e}_1)\}$

$$J = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 & 0 & -1 & 0 & 0\\ 0 & 1 & 0 & 1 & 0\\ 1 & 0 & 0 & 0 & 0\\ 0 & -1 & 0 & 0 & 0\\ 0 & 0 & 0 & \sqrt{2} \end{bmatrix}$$

• 5 point correspondences $(\mathbf{u}_{j}, \mathbf{v}_{j})$

• $L = \{E \in \mathbb{P}^8 | \mathbf{u}_1^T E \mathbf{v}_1 = \dots = \mathbf{u}_5^T E \mathbf{v}_5 = 0\} \in G(3, \mathbb{P}^8)$

• Now want to sample $L \sim \psi$ where ψ samples $\mathbf{u}_1, \mathbf{v}_1, \dots, \mathbf{u}_5, \mathbf{v}_5$ uniformly i.i.d in \mathbb{P}^2

• 5 point correspondences $(\mathbf{u}_{j}, \mathbf{v}_{j})$

• $L = \{E \in \mathbb{P}^8 | \mathbf{u}_1^T E \mathbf{v}_1 = \dots = \mathbf{u}_5^T E \mathbf{v}_5 = 0\} \in G(3, \mathbb{P}^8)$

• Now want to sample $L \sim \psi$ where ψ samples $\mathbf{u}_1, \mathbf{v}_1, \dots, \mathbf{u}_5, \mathbf{v}_5$ uniformly i.i.d in \mathbb{P}^2

Theorem [Breiding—F.—Santarsiero—Shehu '22] $\mathbb{E}_{L \sim \psi} \#(\mathscr{C} \cap L) = 30\pi^2 \text{vol}(K)$

 $\mathbb{E}_{L \sim \psi} \#(\mathscr{E} \cap L) = 30\pi^2 \operatorname{vol}(K)$

Proof key components

(1) Same use of Coarea formula, but now $J \in \mathbb{R}^{5 \times 30}$, more complicated change of basis to get expected value of determinant of a random matrix

(2)

$$\mathbb{E}_{L \sim \psi} \#(\mathscr{E} \cap L) = 30\pi^2 \mathrm{vol}(K)$$

Proof key components

(1) Same use of Coarea formula, but now $J \in \mathbb{R}^{5 \times 30}$, more complicated change of basis to get expected value of determinant of a random matrix

(2) Expected value of determinant of a random matrix is the volume of a

convex body K called a zonoid with support function $h_K(x) = \frac{1}{2} \mathbb{E} |\langle x, \mathbf{z} \rangle|$

$$\mathbf{z} = egin{bmatrix} b \cdot r \cdot \sin heta \ b \cdot r \cdot \cos heta \ a \cdot s \cdot \sin heta \ a \cdot s \cdot \cos heta \ rs \end{bmatrix},$$

 $\mathbb{R}^{5\times30}$, more complicated erminant of a random matrix m matrix is the volume of a 1

 $a, b, r, s \sim N(0, 1), \quad \theta \sim \text{Unif}([0, 2\pi)), \quad \text{all independent.}$

EXPERIMENTS AND BOUNDS

 $\mathbb{E}_{L \sim \psi} \#(\mathscr{E} \cap L) = 30\pi^2 \operatorname{vol}(K)$ K is the essential zonoid with support function $h_{K}(x) = \frac{1}{2} \mathbb{E} \left| \left\langle x, \mathbf{z} \right\rangle \right|$

A lower bound: $\mathbb{E}_{L \sim \psi} #(\mathscr{E} \cap L) \geq .93$

Computed polytope contained in essential zonoid, evaluated with Mathematica

EXPERIMENTS AND BOUNDS

FURTHER DIRECTIONS

- Other Minimal problems
 - Minimal problem has the minimum amount of data so the solution is uniquely determined up to finitely many solutions.

minimal data	degree	
5 point pairs	10	
7 point pairs	3	
6 point pairs	15	
3 world-image	4	
point pairs		
4 point pairs	1	
9 line triples	36	
3 point triples	216	
+1 line triple		
8 point pairs	16	
known cameras with:		
• 1 point pair	• 6	
• 1 point triple	• 47	
	minimal data5 point pairs7 point pairs6 point pairs6 point pairs3 world-image point pairs4 point pairs9 line triples3 point triples4 point pairs9 line triples3 point triples+1 line triple8 point pairsknown cameras with:1 point pair1 point triple	

FURTHER DIRECTIONS

- When are there zero solutions?
- Other probability distributions
- Exact values for essential zonoid

THANK YOU!