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AVERAGE DEGREE OF THE 
ESSENTIAL VARIETY

• Essential Variety


• Degree is 10:   for random linear space 

ℰ =

#ℰ ∩ L ≤ 10 L

Theorem [Breiding—F.—Santarsiero—Shehu ’22]


𝔼L∼O(9)#(ℰ ∩ L) = 4



AVERAGE DEGREE OF THE 
ESSENTIAL VARIETY

• Essential Variety


• Degree is 10:   for random linear space 

ℰ =

#ℰ ∩ L ≤ 10 L

Theorem [Breiding—F.—Santarsiero—Shehu ’22]


𝔼L∼O(9)#(ℰ ∩ L) = 4
Theorem [Breiding—F.—Santarsiero—Shehu ’22]


𝔼L∼ψ#(ℰ ∩ L) = 30π2vol(K)
K = essential zonoid



THE PLAN

• What is the Essential Variety?


• Using the Co-area formula to see  


• Experiments and bounds for the essential zonoid


• Further directions

𝔼L∼O(9)#(ℰ ∩ L) = 4



WHAT IS ALGEBRAIC VISION?



Photo credit and more information see Kileel and Kohn Snapshot of Algebraic Vision

WHAT IS ALGEBRAIC VISION?



THE 5 POINT RELATIVE POSE PROBLEM

• Two pinhole cameras 


• 5 point-correspondences




THE 5 POINT RELATIVE POSE PROBLEM

• Two pinhole cameras 


• 5 point-correspondences


• Goal: reconstruct the relative position 
between the two cameras



THE 5 POINT RELATIVE POSE PROBLEM

• Two pinhole cameras 


• 


• , rank 3


• Calibrated cameras:

C1, C2 : ℙ3 → ℙ2

Cj ∈ ℝ3×4

Cj = [R, t] where R ∈ SO(3), t ∈ ℝ3

C1 C2



THE 5 POINT RELATIVE POSE PROBLEM

• Two pinhole cameras 


• Since we are interested in the relative 
position: C1 = [I3, 0] C2 = [R, t]

C1 C2



THE 5 POINT RELATIVE POSE PROBLEM

•  


• 5 point correspondences 


• 


C1 = [I3, 0] C2 = [R, t]

(u, v)

C1x = u C2x = v

C1 C2

x

u v



THE ESSENTIAL VARIETY

•  For a point correspondence 


• We can write  


• Where Essential matrices are of the form 



C1x = u C2x = v

uTEv = 0

E = [t]×R t ∈ ℝ3, R ∈ SO(3)



THE ESSENTIAL VARIETY

• 
ℰ = π ({E ∈ ℝ3×3 |E = [t]×R and R ∈ SO(3) and t ∈ ℝ3}) ⊂ ℙ8



THE ESSENTIAL VARIETY

• 


• [Demazure ’88] Dimension 5, degree 10


• Cut out by 10 cubic equations: 



ℰ = {E = [t]×R} ⊂ ℙ8

det(E) = 0, 2EETE − tr(EET)E = 0



THE 5 POINT RELATIVE POSE PROBLEM

•  


• 5 point correspondences 


• 


• The number of real solutions is


•

C1 = [I3, 0] C2 = [R, t]

(uj, vj)

L = {E ∈ ℙ8 |u1TEv1 = ⋯ = u5TEv5 = 0} ∈ G(3,ℙ8)

#(ℰ ∩ L) ∈ {0,2,4,6,8,10}

C1 C2

x

u v



PROOF TECHNIQUES FOR O(9)

• Essential Variety


•  and   means that 

  for  uniform in 

ℰ =

L0 ∈ G(3,ℙ8) L ∼ O(9)
L = U ⋅ L0 U O(9)

Theorem [Breiding—F.—Santarsiero—Shehu ’22]


𝔼L∼O(9)#(ℰ ∩ L) = 4



PROOF TECHNIQUES FOR O(9)

• Essential Variety


•  and   means that 

  for  uniform in 

ℰ =

L0 ∈ G(3,ℙ8) L ∼ O(9)
L = U ⋅ L0 U O(9)

Proof (1) [Integral Geometry Formula (Howard ’93)]


𝔼L∼O(9)#(ℰ ∩ L) =
vol(ℰ)
vol(ℙ5)



PROOF TECHNIQUES FOR O(9)

• Essential Variety


•  and   means that 

  for  uniform in 

ℰ =

L0 ∈ G(3,ℙ8) L ∼ O(9)
L = U ⋅ L0 U O(9)

Proof (1) [Integral Geometry Formula (Howard ’93)]


𝔼L∼O(9)#(ℰ ∩ L) =
vol(ℰ)
vol(ℙ5)

suffices to show vol(ℰ) = 4vol(ℙ5)



PROOF TECHNIQUES FOR O(9)

Proof (2) [Coarea formula]


suffices to show vol(ℰ) = 4vol(ℙ5)

ℰ = image{(R, t) ↦ E}

vol(ℰ) = ∫SO(3)×𝕊2

det(JJT) dR dt,  where  J is Jacobian of (R, t) ↦ E



PROOF TECHNIQUES FOR O(9)

Proof (3) Key components


(1) Need  independent of 


(2) 


(3)


J R, t

vol(ℰ) = ∫SO(3)×𝕊2

det(JJT) dR dt = vol(SO(3))vol(𝕊2) det JJT = 32π3 det JJT



PROOF TECHNIQUES FOR O(9)

Proof (3) Key components


(1) Need  independent of 


(2) Compute explicit basis elements  


(3)


J R, t

TI3
SO(3) × Te1

𝕊2

vol(ℰ) = 32π3 det JJT



PROOF TECHNIQUES FOR O(9)

Proof (3) Key components


(1) Need  independent of 


(2) Compute explicit basis elements  


(3) Compute directly derivative with respect to this basis


J R, t

TI3
SO(3) × Te1

𝕊2

vol(ℰ) = ∫SO(3)×𝕊2

det(JJT) dR dt = vol(SO(3))vol(𝕊2) det JJT = 32π3 det JJT



WHAT HAPPENED TO THE 5 
POINT PROBLEM?

• 5 point correspondences 


• 


• Now want to sample  where  
samples  uniformly i.i.d in 

(uj, vj)

L = {E ∈ ℙ8 |u1TEv1 = ⋯ = u5TEv5 = 0} ∈ G(3,ℙ8)

L ∼ ψ ψ
u1, v1, …, u5, v5

ℙ2



WHAT HAPPENED TO THE 5 
POINT PROBLEM?

Theorem [Breiding—F.—Santarsiero—Shehu ’22]


𝔼L∼ψ#(ℰ ∩ L) = 30π2vol(K)

• 5 point correspondences 


• 


• Now want to sample  where  
samples  uniformly i.i.d in 

(uj, vj)

L = {E ∈ ℙ8 |u1TEv1 = ⋯ = u5TEv5 = 0} ∈ G(3,ℙ8)

L ∼ ψ ψ
u1, v1, …, u5, v5

ℙ2



WHAT HAPPENED TO THE 5 
POINT PROBLEM?

Proof key components


(1) Same use of Coarea formula, but now , more complicated 
change of basis to get expected value of determinant of a random matrix


(2) 


J ∈ ℝ5×30

𝔼L∼ψ#(ℰ ∩ L) = 30π2vol(K)



WHAT HAPPENED TO THE 5 
POINT PROBLEM?

Proof key components


(1) Same use of Coarea formula, but now , more complicated 
change of basis to get expected value of determinant of a random matrix


(2) Expected value of determinant of a random matrix is the volume of a 

convex body K called a zonoid with support function 


J ∈ ℝ5×30

hK(x) =
1
2

𝔼 |⟨x, z⟩ |

𝔼L∼ψ#(ℰ ∩ L) = 30π2vol(K)



EXPERIMENTS AND BOUNDS

A lower bound: 


Computed polytope contained in essential 
zonoid, evaluated with Mathematica

𝔼L∼ψ#(ℰ ∩ L) ≥ .93

𝔼L∼ψ#(ℰ ∩ L) = 30π2vol(K)
K is the essential zonoid with support function 

hK(x) =
1
2

𝔼 |⟨x, z⟩ |



EXPERIMENTS AND BOUNDS

With high probability


  3.90 < 𝔼L∼ψ#(ℰ ∩ L) < 4

O(9) ψ



FURTHER DIRECTIONS

•Other Minimal problems


•Minimal problem has the 
minimum amount of data 
so the solution is uniquely 
determined up to finitely 
many solutions. 



FURTHER DIRECTIONS

•When are there zero 
solutions?


•Other probability 
distributions


•Exact values for essential 
zonoid




THANK YOU!


