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Seeing inside the earth with earthquakes

figure from: https://www.dkfindout.com/us/earth/earthquakes/shock-waves/

Model: A smooth, compact and
connected Riemannian manifold (M, g)
with a smooth boundary ∂M

Data: Travel times of seismic waves

Inverse Problem: Recover the
Riemannian manifold (M, g).

This task is known as the
boundary rigidity problem.
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Poor data (sources only at the boundary) makes the
boundary rigidity problem extremely difficult!

⇒

More data (interior interactions)
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Inverse Problems: Recover a compact Riemannian manifold (M, g) (up to change of coordinates) from
1 Travel Time Data {d(p, ·) : ∂M → R| p ∈ M}

Uniqueness: Katchalov-Kurylev-Lassas (2001), Hölder stability: Katsuda-Kurylev-Lassas (2007)
Optimal uniqueness in Finsler geometries: de Hoop-Ilmavirta-Lassas-S (2021)

2 Broken Scattering Relations “Exiting directions, and lengths of broken geodesics”

Uniqueness for dimension 3 and up: Kurylev-Lassas-Uhlmann (2010)
Uniqueness in Finsler geometries with a foliation condition for dimension 3 and up:
de Hoop-Ilmavirta-Lassas-S (2021)

p

M

z1 z2∂M
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Main results:

1 Uniqueness of the Travel Time Problem with partial data on compact Riemannian
manifolds with strictly convex boundary

2 Finite Source Approximation of Simple Riemannian manifolds

3 Lipschitz Stability of the Travel Time Data on Simple Riemannian manifolds

4 Uniqueness of the Broken Scattering Relation on Simple Riemannian manifolds
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Partial Travel Time Data:

Γ ⊂ ∂M is a known open subset of the boundary

The set of travel time functions {d(p, ·) : Γ → R| p ∈ M} is given

∂M is strictly convex:

Geodesics that are
tangental to ∂M exit
immediately

Any p, q ∈ M can be
connected by a distance
minimizing geodesic (not
necessarily unique!)
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Theorem (Pavlechko-S (2022))

A smooth, compact, connected, and oriented Riemannian manifold of dimension ≥ 2 with smooth and
strictly convex boundary is determined upto an isometry by its partial travel time data.

Key of the proof:
The gradient of a distance function is the velocity of a distance minimizing unit speed geodesic.

If we can differentiate the distance function, we can track the traces of some geodesics!

Main obstacle: For p ∈ M , can the set Γ ∩ {x ∈ M : d(p, ·) is not C1-smooth at x} be very large?
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Cut locus: For each p ∈ M

cut(p) ={q ∈ M : There are two distance

minimizing curves from p to q}

Proposition: Pavlechko-S (2022)

If ∂M is strictly convex then:

cut(p) is closed

d(p, ·) is C∞ in M \ (cut(p) ∪ {p})
Hausdorff dimension of cut(p) ≤ n− 1

Hausdorff dimension of
cut(p) ∩ ∂M ≤ n− 2

Implication: We can embed M into L∞(Γ)
with the partial travel time map:
R : M → L∞(Γ), R(p) = d(p, ·)|Γ.
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Simple Riemannian manifolds

M is smooth, connected and compact manifold with smooth boundary

∂M is strictly convex (all tangential geodesics to the boundary exit immediately)

Each pair of points is connected by a smoothly varying unique distance minimizing geodesic

1 No trapped geodesics

2 No conjugate points

3 Distance function d(p, ·) is smooth on M \ {p}
4 M is diffeomorphic with the Euclidean disc Dn.
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Arrival time data: The set of unknown interior point sources S ⊂ M int × (0,∞).
Arrival time function:

as(z) = d(p, z) + τ, for z ∈ ∂M and s = (p, τ) ∈ S.

Known:
Q(S) :=

⋃
s∈S

Graph(as) ⊂ ∂M × (0,∞), and (∂M, g|∂M )

Observe: Q(S) does not have any labels and we know it as a point set.
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Theorem (de Hoop-Ilmavirta-Lassas-S (2023))

We can disentangle the signals and build a metric graph between the source points

We can provide data driven density estimates for the source points

We can show that the metric graph approximate the Riemannian manifold
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Geometric assumptions: (M, g) is a simple Riemannian n-manifold whose sectional curvature is
bounded from above by Csec+ > 0 so that

Diam(M)
√

Csec+ < π. (1)

Remark: This holds if (M, g) has a negative sectional curvature.

(1) is used to estimate the density of the sources, via Rauch’s comparison theorem for n-sphere Sn(r)
and spherical law of cosines.

Rauch’s Comparison theorem

Let p, q, z ∈ M . There are p̃, q̃, z̃ ∈ Sn(r), for
r = (Csec+)

−1/2 so that

d(p, q) = d(p̃, q̃), d(p, z) = d(p̃, z̃).

If α = α̃ then d(q, z) ≤ d(q̃, z̃).

If d(q, z) = d(q̃, z̃) then α ≤ α̃.
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Travel Time Data

Without loss of generality we assume for a simple Riemannian manifold (M,∂M, g) = (Dn,Sn−1, g).

For a point p ∈ Dn its travel time function rp : Sn−1 → R is defined by the formula

rp(z) = d(p, z).

The point source p is unknown.

The travel time map of the simple Riemannian manifold (Dn, g) is then given by the formula

R : (Dn, g) → (C(Sn−1), ∥ · ∥∞), R(p) = rp.

The image set R(Dn) ⊂ C(Sn−1) of the travel time map is called the travel time data of the
Riemannian manifold (Dn, g).

Teemu Saksala (NC State University) Travel Time Inverse Problems July 17, 2023 16 / 24



How to measure the closeness of the travel time data and the metrics?

Distance of travel time data, of two simple Riemannian metrics g1 and g2 on Dn, is

d
C(Sn−1)
H (R1(Dn),R2(Dn)) ≥ 0,

where dH is the Hausdorff distance of (C(Sn−1), ∥ · ∥∞).

The travel time data of simple Riemannian metrics g1 and g2 on Dn coincide if

R2(Dn) = R1(Dn) ⇔ d
C(Sn−1)
H (R1(Dn),R2(Dn)) = 0.

To measure the closeness of compact metric spaces X and Y we use the Gromov–Hausdorff distance

dGH(X,Y ) := inf{dZH(f(X), g(Y )); Z is a metric space,

f : X → Z and g : Y → Z are isometric embeddings}.

dGH(X,Y ) = 0 if and only if the metric spaces X and Y are isometric.
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Theorem (Ilmavirta-Liu-S, 2023)

Let n ≥ 2, and let g1 and g2 be two simple Riemannian metrics of Dn. Then

dGH((Dn, g1), (Dn, g2)) ≤ d
C(Sn−1)
H (R1(Dn),R2(Dn)).

If the travel time data for two metrics coincide, then they agree up to a boundary fixing diffeomorphism.

Proof:

Ri : (Dn, di) → (C(Sn−1), ∥ · ∥∞) is a metric isometry.

If R2(Dn) = R1(Dn), then R−1
2 ◦ R1 : (Dn, d1) → (Dn, d2) is a bijective distance preserving map.

Theorem (Myers-Steenrod, 1939)

A bijective distance preserving map between Riemannian manifolds is a smooth Riemannian isometry.

R−1
2 ◦ R1 : is a smooth Riemannian isometry.

The stability claim follows from the definition of Gromov-Hausdorff distance.
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Broken Scattering Relations

For each T > 0 we define a relation RT on ∂inSDn (the bundle of inward pointing directions) so that
v1RT v2 if there are two numbers t1, t2 > 0 for which

t1 + t2 = T and γv1(t1) = γv2(t2) =: p.

We do not know the scattering points p ∈ M , or the travel times t1, t2.

The family {BT : T > 0} of relations is called the Broken Scattering Relations of Riemannian
manifold (Dn, g).

Teemu Saksala (NC State University) Travel Time Inverse Problems July 17, 2023 20 / 24



Uniqueness of the broken scattering relations on simple manifolds

Theorem (Ilmavirta-Liu-S., 2023)

Let n ≥ 2, and let g1 and g2 be two simple Riemannian metrics in Dn whose first fundamental forms
agree on Sn−1. If the broken scattering relations of g1 and g2 coincide, then there exists a smooth
Riemannian isometry Ψ: (Dn, g1) → (Dn, g2) whose boundary restriction Ψ: Sn−1 → Sn−1 is the
identity map.

Key of the proof: Reduce the problem to the travel time data.

1 Recover the exit time function and the scattering relation

2 Recover the travel time functions
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Recovery of the exit time function and the scattering relation

The broken scattering relations determine the exit time function:

τexit(v) := sup{t > 0 : γv(t) ∈ Dn} = sup

{
T

2
: vBT v

}
, v ∈ ∂inSDn.

Let v1, v2 ∈ ∂inSDn. In simple geometries the following two statements are equivalent:
(1) We have V (v1) = V (v2), where

V (vi) := {set of all geodesics intersecting γvi}.

(2) Either v1 = v2 or v2 = −ϕτexit(v1)(v1).

Remark: In a hemisphere any two
geodesics intersect! Simplicity is needed!

The broken scattering relations determine the scattering relation v1 7→ ϕτexit(v1)(v1).
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Recovery of the travel times

Let v1, v2 ∈ ∂inSDn and let ηi := −ϕτexit(vi)(vi).

Suppose that v1BT v2 for some T = T (v1, v2) > 0.

Since g is simple, the geodesics γv1 and γv2 intersect exactly once. Thus, there are some numbers
t1, t2, s1, s2 ≥ 0 satisfying the four equations with the known RHS:

t1 + t2 = T (v1, v2), t1 + s1 = T (v1, η1), t2 + s2 = T (v2, η2), and t1 + s2 = T (v1, η2).

⑮ 1,

e V

Therefore:

t1 =
1

2
(T (v1, v2)− T (v2, η2) + T (v1, η2))

and
t2 = T (v1, v2)− t1.
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This talk was based on the following papers

1 Uniqueness of the partial travel time representation of a compact Riemannian manifold
with strictly convex boundary, with: Ella Pavlechko, Inverse Problems and Imaging, 16(5),
(October 2022), pp 1325-1357

2 Stable reconstruction of simple Riemannian manifolds from unknown interior sources,
with: Maarten V. de Hoop, Joonas Ilmavirta and Matti Lassas, Inverse Problems, to appear

3 Three travel time inverse problems on simple Riemannian manifolds, with: Joonas Ilmavirta
and Boya Liu, Proceedings of the American Mathematical Society, to appear

Part of this research was supported by NSF DMS-2204997

Thank you for your attention!

Slides available at teemusaksala.com
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