

Anisotropy helps in seismology

Inverse Problems and Nonlinearity
Banff
Joonas IImavirta
July 18, 2023
Based on joint work with
Maarten de Hoop, Matti Lassas, Anthony Várilly-Alvarado

Overview

\qquad

Overview

- Previously:
- Nonlinearity helps.
- Nonlocality helps.

Overview

- Previously:
- Nonlinearity helps.
- Nonlocality helps.
- Now:
- Anisotropy helps.

Overview

- Previously:
- Nonlinearity helps.
- Nonlocality helps.
- Now:
- Anisotropy helps.
- Topic: Anisotropy in seismology and how algebraic geometry makes it useful.

Overview

- Previously:
- Nonlinearity helps.
- Nonlocality helps.
- Now:
- Anisotropy helps.
- Topic: Anisotropy in seismology and how algebraic geometry makes it useful.

Theorem (de Hoop-I-Lassas-Várilly-Alvarado, 2023)

Generically an anisotropic stiffness tensor is uniquely determined by any of the following:

- slowness polynomial,
- slowness surface,
- any small part of of the slowness surface for a single polarization.

But orthorhombic stiffness tensors are not unique!

Outline

(1) Inverse problems in elasticity

- Elastic wave equation
- Propagation of singularities
- Slowness polynomial and slowness surface
- Geometrization of an analytic problem

2 Geometry of slowness surfaces
(3) A two-layer model

Elastic wave equation

Quantities:

- Displacement $u(t, x) \in \mathbb{R}^{n}$.
- Density $\rho(x) \in \mathbb{R}$.
- Stiffness tensor $c_{i j k l}(x) \in \mathbb{R}^{n^{4}}$.

Elastic wave equation

Quantities:

- Displacement $u(t, x) \in \mathbb{R}^{n}$.
- Density $\rho(x) \in \mathbb{R}$.
- Stiffness tensor $c_{i j k l}(x) \in \mathbb{R}^{n^{4}}$.

Properties:

- $\rho>0$.
- $c_{i j k l}=c_{k l i j}=c_{j i k l}$.
- $\sum_{i, j, k, l} c_{i j k l} A_{i j} A_{k l}>0$ whenever $A=A^{T} \neq 0$.

Elastic wave equation

Quantities:

- Displacement $u(t, x) \in \mathbb{R}^{n}$.
- Density $\rho(x) \in \mathbb{R}$.
- Stiffness tensor $c_{i j k l}(x) \in \mathbb{R}^{n^{4}}$.

Properties:

- $\rho>0$.
- $c_{i j k l}=c_{k l i j}=c_{j i k l}$.
- $\sum_{i, j, k, l} c_{i j k l} A_{i j} A_{k l}>0$ whenever $A=A^{T} \neq 0$.

Equation of motion: $\quad \rho(x) \partial_{t}^{2} u_{i}(t, x)-\sum_{j, k, l} \partial_{j}\left[c_{i j k l}(x) \partial_{k} u_{l}(x)\right]=0$.

Propagation of singularities

The EWE is hyperbolic so we can have propagating singularities.

Propagation of singularities

The EWE is hyperbolic so we can have propagating singularities. Suppose that ρ and c are constants.

Propagation of singularities

The EWE is hyperbolic so we can have propagating singularities.
Suppose that ρ and c are constants.
If $u=A e^{i \omega(t-p \cdot x)}$, then the EWE becomes

$$
\rho \omega^{2}[-I+\Gamma(p)] A=0,
$$

where

$$
\Gamma_{i l}(p)=\sum_{j, k} \rho^{-1} c_{i j k l} p_{j} p_{k}
$$

is the Christoffel matrix.

Propagation of singularities

The EWE is hyperbolic so we can have propagating singularities.
Suppose that ρ and c are constants.
If $u=A e^{i \omega(t-p \cdot x)}$, then the EWE becomes

$$
\rho \omega^{2}[-I+\Gamma(p)] A=0,
$$

where

$$
\Gamma_{i l}(p)=\sum_{j, k} \rho^{-1} c_{i j k l} p_{j} p_{k}
$$

is the Christoffel matrix.

The polarization A is an eigenvector of the Christoffel matrix.

Propagation of singularities

If we choose not to keep track of the polarization A, we get the condition

$$
\operatorname{det}[\Gamma(p)-I]=0
$$

Propagation of singularities

If we choose not to keep track of the polarization A, we get the condition

$$
\operatorname{det}[\Gamma(p)-I]=0
$$

In general, singularities of the elastic wave equation (mostly!) satisfy

$$
\operatorname{det}[\Gamma(x, p)-I]=0
$$

where c and ρ are allowed to depend on x.

Propagation of singularities

If we choose not to keep track of the polarization A, we get the condition

$$
\operatorname{det}[\Gamma(p)-I]=0
$$

In general, singularities of the elastic wave equation (mostly!) satisfy

$$
\operatorname{det}[\Gamma(x, p)-I]=0
$$

where c and ρ are allowed to depend on x.
The fastest singularities follow the geodesic flow of the Finsler metric $F^{q P}=\left[\lambda_{1}(\Gamma)^{1 / 2}\right]^{*}$.

Slowness polynomial and slowness surface

A reduced stiffness tensor $a_{i j k l}=\rho^{-1} c_{i j k l}$ defines

- a Christoffel matrix $\Gamma_{a}(p)$ and
- a slowness polynomial $P_{a}(p)=\operatorname{det}\left[\Gamma_{a}(p)-I\right]$.

Slowness polynomial and slowness surface

A reduced stiffness tensor $a_{i j k l}=\rho^{-1} c_{i j k l}$ defines

- a Christoffel matrix $\Gamma_{a}(p)$ and
- a slowness polynomial $P_{a}(p)=\operatorname{det}\left[\Gamma_{a}(p)-I\right]$.

The set where singularities are possible is the slowness surface

$$
\Sigma_{a}=\left\{p \in \mathbb{R}^{n} ; P_{a}(p)=0\right\}
$$

Knowing the slowness polynomial \Longleftrightarrow knowing the slowness surface.

Slowness polynomial and slowness surface

A slowness surface in 2D with its two branches, and the corresponding two Finsler norms. The quasi pressure (qP) polarization behaves well.
Anisotropy \Longleftrightarrow dependence on direction \Longleftrightarrow not circles.

Geometrization of an analytic problem

Original inverse problem
Given information of the solutions to the elastic wave equation on $\partial \Omega$, find the parameters $c(x)$ and $\rho(x)$ for all $x \in \Omega$.

Geometrization of an analytic problem

Original inverse problem
Given information of the solutions to the elastic wave equation on $\partial \Omega$, find the parameters $c(x)$ and $\rho(x)$ for all $x \in \Omega$.

Geometrized inverse problem

Given the travel times of singularities (geodesic distances) between boundary points, find the qP Finsler manifold (Ω, F).

Geometrization of an analytic problem

Original inverse problem

Given information of the solutions to the elastic wave equation on $\partial \Omega$, find the parameters $c(x)$ and $\rho(x)$ for all $x \in \Omega$.

Geometrized inverse problem

Given the travel times of singularities (geodesic distances) between boundary points, find the qP Finsler manifold (Ω, F).

Remarks:

- Geometric inverse problems like this can be solved for qP geometries.
- Riemannian geometry is not enough; it can only handle a tiny subclass of physically valid and interesting stiffness tensors.
- Knowing the metric is the same as knowing the (co)sphere bundle: (M, g) or $(M, F) \Longleftrightarrow(M, S M) \Longleftrightarrow\left(M, S^{*} M\right)$.
- The cospheres of the Finsler geometry are the qP branches of the slowness surface.

Geometrization of an analytic problem

Rays follow geodesics and tell about the interior structure encoded as a geometry.

Outline

(1) Inverse problems in elasticity
(2) Geometry of slowness surfaces

- Algebraic variety
- Generic irreducibility
- Generically unique reduced stiffness tensor
(3) A two-layer model

Algebraic variety

Definition

A set $V \subset \mathbb{R}^{n}$ is an algebraic variety if it is the vanishing set of a collection of polynomials $\mathbb{R}^{n} \rightarrow \mathbb{R}$.

Algebraic variety

Definition
A set $V \subset \mathbb{R}^{n}$ is an algebraic variety if it is the vanishing set of a collection of polynomials $\mathbb{R}^{n} \rightarrow \mathbb{R}$.

Observation

The slowness surface is the vanishing set of the slowness polynomial and thus a variety.

Algebraic variety

Definition

A set $V \subset \mathbb{R}^{n}$ is an algebraic variety if it is the vanishing set of a collection of polynomials $\mathbb{R}^{n} \rightarrow \mathbb{R}$.

Observation

The slowness surface is the vanishing set of the slowness polynomial and thus a variety.
The study of the geometry of varieties is a part of algebraic geometry.

Generic irreducibility

Definition

A variety $V \subset \mathbb{R}^{n}$ is reducible if it can be written as the union of two varieties in a non-trivial way.

The vanishing set of a single polynomial is reducible if it can be written as the product of two polynomials in a non-trivial way.

Generic irreducibility

Definition

A variety $V \subset \mathbb{R}^{n}$ is reducible if it can be written as the union of two varieties in a non-trivial way.

The vanishing set of a single polynomial is reducible if it can be written as the product of two polynomials in a non-trivial way.

Theorem (de Hoop-I.-Lassas-Várilly-Alvarado)

Let $n \in\{2,3\}$. There is an open and dense subset of stiffness tensors a so that the slowness polynomial P_{a} is irreducible.

Generic irreducibility

Definition

A variety $V \subset \mathbb{R}^{n}$ is reducible if it can be written as the union of two varieties in a non-trivial way.

The vanishing set of a single polynomial is reducible if it can be written as the product of two polynomials in a non-trivial way.

Theorem (de Hoop-I.-Lassas-Várilly-Alvarado)

Let $n \in\{2,3\}$. There is an open and dense subset of stiffness tensors a so that the slowness polynomial P_{a} is irreducible.

Remarks:

- This is not true for all a - this fails at least when one of the geometries is Riemannian.
- Typically for a family of polynomials the set of irreducible ones is Zariski-open. We thus only need an example.

Generic irreducibility

Corollary (de Hoop-I.-Lassas-Várilly-Alvarado)
When the slowness surface Σ_{a} is irreducible, any (Euclidean) relatively open subset determines the whole slowness surface.
If $n \in\{2,3\}$, this is generically true.

Generic irreducibility

Corollary (de Hoop-I.-Lassas-Várilly-Alvarado)

When the slowness surface Σ_{a} is irreducible, any (Euclidean) relatively open subset determines the whole slowness surface.
If $n \in\{2,3\}$, this is generically true.
It suffices to measure the well-behaved qP branch!

Generic irreducibility

Any small part of the well-behaved quasi pressure branch determines the whole thing via Zariski closure.

Generically unique reduced stiffness tensor

Theorem (de Hoop-I.-Lassas-Várilly-Alvarado)
Let $n \in\{2,3\}$. There is an open and dense subset W of stiffness tensors a so that the map $W \ni a \rightarrow P_{a}$ is injective.

Generically unique reduced stiffness tensor

Theorem (de Hoop-I.-Lassas-Várilly-Alvarado)

Let $n \in\{2,3\}$. There is an open and dense subset W of stiffness tensors a so that the map $W \ni a \rightarrow P_{a}$ is injective.

Not always true: orthorhombic materials come in quadruplets that have the same slowness surface.

Generically unique reduced stiffness tensor

Theorem (de Hoop-I.-Lassas-Várilly-Alvarado)
Let $n \in\{2,3\}$. There is an open and dense subset W of stiffness tensors a so that the map $W \ni a \rightarrow P_{a}$ is injective.

Not always true: orthorhombic materials come in quadruplets that have the same slowness surface.
Corollary (de Hoop-I.-Lassas-Várilly-Alvarado)
Let $n \in\{2,3\}$. Generically any small subset of the slowness surface Σ_{a} determines a.

Generically unique reduced stiffness tensor

Sketchy proof:

Generically unique reduced stiffness tensor

Sketchy proof:

(Denote by $A \approx \mathbb{R}^{N}$ the space of stiffness tensors and $C \approx \mathbb{R}^{M}$ the space of degree $2 n$ even polynomials on \mathbb{R}^{n}.

Generically unique reduced stiffness tensor

Sketchy proof:

(Denote by $A \approx \mathbb{R}^{N}$ the space of stiffness tensors and $C \approx \mathbb{R}^{M}$ the space of degree $2 n$ even polynomials on \mathbb{R}^{n}.
(2) Define a map $f: A \rightarrow C$ by $f(a)=P_{a}$.

Generically unique reduced stiffness tensor

Sketchy proof:

(Denote by $A \approx \mathbb{R}^{N}$ the space of stiffness tensors and $C \approx \mathbb{R}^{M}$ the space of degree $2 n$ even polynomials on \mathbb{R}^{n}.
(2) Define a map $f: A \rightarrow C$ by $f(a)=P_{a}$.
(3) Projectivize this map.

Generically unique reduced stiffness tensor

Sketchy proof:

(Denote by $A \approx \mathbb{R}^{N}$ the space of stiffness tensors and $C \approx \mathbb{R}^{M}$ the space of degree $2 n$ even polynomials on \mathbb{R}^{n}.
(2) Define a map $f: A \rightarrow C$ by $f(a)=P_{a}$.
(3) Projectivize this map.
(9) For every $c \in C$ we have the fiber dimension $\operatorname{dim}\left(f^{-1}(c)\right)$. The fiber dimension map is upper semicontinuous in the Zariski topology.

Generically unique reduced stiffness tensor

Sketchy proof:

(Denote by $A \approx \mathbb{R}^{N}$ the space of stiffness tensors and $C \approx \mathbb{R}^{M}$ the space of degree $2 n$ even polynomials on \mathbb{R}^{n}.
(2) Define a map $f: A \rightarrow C$ by $f(a)=P_{a}$.
(3) Projectivize this map.
(9) For every $c \in C$ we have the fiber dimension $\operatorname{dim}\left(f^{-1}(c)\right)$. The fiber dimension map is upper semicontinuous in the Zariski topology.
(3) We find an explicit $c \in f(A)$ for which the dimension is zero, and so it is generically zero.

Generically unique reduced stiffness tensor

Sketchy proof:

- Denote by $A \approx \mathbb{R}^{N}$ the space of stiffness tensors and $C \approx \mathbb{R}^{M}$ the space of degree $2 n$ even polynomials on \mathbb{R}^{n}.
(2) Define a map $f: A \rightarrow C$ by $f(a)=P_{a}$.
(3) Projectivize this map.
(9) For every $c \in C$ we have the fiber dimension $\operatorname{dim}\left(f^{-1}(c)\right)$. The fiber dimension map is upper semicontinuous in the Zariski topology.
(3) We find an explicit $c \in f(A)$ for which the dimension is zero, and so it is generically zero.
(6) The fiber $f^{-1}(c)$ generically contains only finitely many points. The number of these points is upper semicontinuous.

Generically unique reduced stiffness tensor

Sketchy proof:

- Denote by $A \approx \mathbb{R}^{N}$ the space of stiffness tensors and $C \approx \mathbb{R}^{M}$ the space of degree $2 n$ even polynomials on \mathbb{R}^{n}.
(2) Define a map $f: A \rightarrow C$ by $f(a)=P_{a}$.
(3) Projectivize this map.
(9) For every $c \in C$ we have the fiber dimension $\operatorname{dim}\left(f^{-1}(c)\right)$. The fiber dimension map is upper semicontinuous in the Zariski topology.
(3) We find an explicit $c \in f(A)$ for which the dimension is zero, and so it is generically zero.
(6) The fiber $f^{-1}(c)$ generically contains only finitely many points. The number of these points is upper semicontinuous.
- We find an explicit $c \in f(A)$ for which the number is one, so it is generically one.

Generically unique reduced stiffness tensor

Sketchy proof:

- Denote by $A \approx \mathbb{R}^{N}$ the space of stiffness tensors and $C \approx \mathbb{R}^{M}$ the space of degree $2 n$ even polynomials on \mathbb{R}^{n}.
(2) Define a map $f: A \rightarrow C$ by $f(a)=P_{a}$.
(3) Projectivize this map.
(9) For every $c \in C$ we have the fiber dimension $\operatorname{dim}\left(f^{-1}(c)\right)$. The fiber dimension map is upper semicontinuous in the Zariski topology.
(3) We find an explicit $c \in f(A)$ for which the dimension is zero, and so it is generically zero.
(6) The fiber $f^{-1}(c)$ generically contains only finitely many points. The number of these points is upper semicontinuous.
- We find an explicit $c \in f(A)$ for which the number is one, so it is generically one.
(응 The generic preimage on the image is thus a singleton, so the map f is generically injective.

Outline

(1) Inverse problems in elasticity

2 Geometry of slowness surfaces
(3) A two-layer model

- The model
- The proof

The model

Assumptions:

The model

Assumptions:

- Two layers: mantle and core.

The model

Assumptions:

- Two layers: mantle and core.
- The interface and the outer surface are strictly convex. (E.g. concentric spheres.)

The model

Assumptions:

- Two layers: mantle and core.
- The interface and the outer surface are strictly convex. (E.g. concentric spheres.)
- The material parameters are constant in each layer.

The model

Assumptions:

- Two layers: mantle and core.
- The interface and the outer surface are strictly convex. (E.g. concentric spheres.)
- The material parameters are constant in each layer.
- No total reflection of qP waves that trap rays to the core. (\approx Herglotz)

The model

Assumptions:

- Two layers: mantle and core.
- The interface and the outer surface are strictly convex. (E.g. concentric spheres.)
- The material parameters are constant in each layer.
- No total reflection of qP waves that trap rays to the core. (\approx Herglotz)

Measurement: Travel times and directions of waves between all surface points, for all polarizations.

The model

Assumptions:

- Two layers: mantle and core.
- The interface and the outer surface are strictly convex. (E.g. concentric spheres.)
- The material parameters are constant in each layer.
- No total reflection of qP waves that trap rays to the core. (\approx Herglotz)

Measurement: Travel times and directions of waves between all surface points, for all polarizations.

Result: The measurement generically determines the model completely!

The proof

First find outer stiffness and boundary, then inner stiffness.

Today's highlights

Theorem (de Hoop-I.-Lassas-Várilly-Alvarado, 2023)
Generically an anisotropic stiffness tensor is uniquely determined by any of the following:

- slowness polynomial,
- slowness surface,
- any small part of of the slowness surface for a single polarization.

But orthorhombic stiffness tensors are not unique!

Theorem (de Hoop-I.-Lassas-Várilly-Alvarado, 2023)

Suppose the planet is piecewise homogeneous (but anisotropic) with two layers. Measurements of travel times of qP (or all) rays generically determine the whole model:

- stiffness tensor in the mantle,
- stiffness tensor in the core,
- the core-mantle boundary.

DISCOVERING MATH at JYU. Since 1863.

Slides and papers available:

http://users.jyu.fi/~jojapeil

Ask for details:
joonas.ilmavirta@jyu.fi

Zariski topology

Given any set F of functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, we can define a closure for all $A \subset \mathbb{R}^{n}$:

$$
\operatorname{cl}_{F}(A)=\left\{x \in \mathbb{R}^{n} ; \forall f \in F:\left.f\right|_{A}=0 \Longrightarrow f(x)=0\right\}
$$

(This satisfies the Kuratowski axioms if F is a unital ring.)
Examples:

- $F=C\left(\mathbb{R}^{n}\right) \rightsquigarrow$ standard Euclidean topology.
- $F=C^{\infty}\left(\mathbb{R}^{n}\right) \rightsquigarrow$ standard Euclidean topology.
- $F=\{$ polynomial functions $\} \rightsquigarrow$ Zariski topology.

A variety is the same as a Zariski-closed set.

