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Crystal plasticity and dislocations
Crystal Plasticity = ‘slip’ of crystallographic planes.

Orowan/Polanyi/Taylor ‘34: Slip propagates by motion of dislocations.

http://www.doitpoms.ac.uk/tlplib/miller_indices/uses.php



Dislocation modelling approaches
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Dislocation Dynamics
Advantages:
I Discretise only dislocations:

better numerical complexity.
I Allows mechanism identification:

better human complexity.
I Acts as a bridge between

discrete and continuum.

Open problems with current approaches:
1. A lack of well-posedness theory, and no numerical analysis.
2. Uncertainty about the correct constitutive relations.
3. Missing details of point defect and grain boundary interaction.
4. No fully 3D homogenisation results to connect to higher-scale

continuum theories (c.f. Amit Acharya’s talk).

This talk: Towards a formulation resolving Problem 1.
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Kinematics



Kinematics

Variables:
I Deformation gradient: ∇y(t, x) ∈ R3×3.
I Plastic distortion: P(t, x) ∈ L(Tx Ω; Sx Ω) ' R3×3.
I Dislocation currents:T b(t) ∈ D1(Ω) (for each Burgers vector b).

Or, equivalently:
I Crystal ‘scaffold’: Q(t, x) = P−1(t, x).
I Elastic distortion: E (t, x) = ∇y(t, x)P−1(t, x) = ∇y(t, x)Q(t, x).

A model should relate (a subset of) these variables as they evolve.

In particular, want something like

d
dt P(t) = D

(
T b(t), d

dt T b(t)
)
.

However: d
dt T b is a time-derivative of a current and should depend in a

coupled way on the stress, so is a nasty object!
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Dislocation velocities and slicing
I Treat trajectories as 2-currents in 4-dimensional space-time.



Geometric slip rate

We argue that the rate of plastic distortion should be written as

d
dt P =

∑
b

b ⊗ gb ∈ L(Tx Ω, Sx Ω)

where the geometric slip rate gb is of the form

gb = (vb × ~T b)mb = ?γb,

where:
I vb is the dislocation velocity vector,

I ~T b is the dislocation tangent vector,
I mb is the dislocation multiplicity, and
I γb is the equivalent two-vector slip rate at (t, x).
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Energetic considerations
E = ∇y P−1, so assuming hyperelasticity, internal energy is:

We(y ,P) =
∫

Ω
We(E )dx =

∫
Ω

We(∇y P−1)dx

Rate of doing internal work is

I(Ω) =
∫

Ω

d
dt We(∇y P−1) +

∑
b

Xb · gb dx .

Differentiating in time, we find that

d
dt We(∇y P−1) = T : ∇ẏ −M : L

where
I T is the Piola-Kirchoff stress, T = DWe(∇y P−1)P−T ,
I M is the Mandel stress, M = P−T∇yT DWe(∇y P−1), and
I L is the structural plastic flow rate, L = ṖP−1 = −Q−1Q̇.



Energetic considerations

By standard arguments, we can deduce:
I The elastic force balance:

ρÿ − DivT = f ,

I The dislocation force balance:

Xb = P−1MT b = P−1(DWe(E ))T Eb.

To close the system, we propose a flow rule of the form

PXb ∈ ∂Rb(P−T gb),

where:
I Rb is a positive, convex dissipation potential, and
I gb is the geometric slip rate.
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Some sanity checks

I The system linearises correctly to give the usual Peach-Koehler force
on a dislocation usually computed from linear elasticity:

If E = I +βe and P = I +βp, then neglecting quadratic terms, we have

Xb · gb = (P−1MT b) · gb ≈ −vb ·
(

(Cβe)b × ~T b
)
.

I Plastic incompressibility arises in a natural way:

d
dt log det(Q) = tr(Q−1Q̇) = −tr(LQ) = −tr

(∑
b

Qb ⊗ gb
)
,

so det(Q) = det(P) = 1 for all time if Qb is orthogonal to gb, i.e. only
glide motion is allowed.
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Conclusions and outlook

I Introduced a new theoretical framework for frame-indifferent
evolutionary crystal plasticity driven by dislocation flow that unifies
various ideas already present in the literature.

I Well-posedness can be achieved for the evolutionary problem in our
framework using tools from Geometric Measure Theory.

Ongoing and future work:
I A study of Frank-Read sources.
I Further investigation of constitutive relations, linearisation and

numerical methods.
I Homogenisation?

Reference: TH, Filip Rindler, Math. Model. Appl. Sci. 2022, 32(5) pp
851–910.
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