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Non-interpenetration in large-strain elasticity: a (very short)

recap

A body should not be allowed to interpenetrate itself during elastic

deformations. Extreme compressions should lead to a blow-up of

the elastic energy, therefore being energetically unfavorable.

How to enforce that, in practice? J. Ball, V. Sv̌erák, I. Fonseca,

W. Gangbo,...

• Positivity of the determinant of ∇y?

Not enough to have injectivity everywhere nor global

invertibility.

• Positivity of the determinant of ∇y+ Ciarlet-Nečas condition?

Injectivity almost everywhere and non-interpenetration.ˆ
Ω
det∇y(x) dx ≤ Ld(y(Ω)).
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Griffith’s functional in 2D [A. Griffith, B. Bourdin, G. Francfort,

J. Marigo,...]

E(y) =
ˆ
Ω
W (∇y(x))dx + κH1(Jy ),

• Frame-indifferent bulk energy vs surface term.

• W : M2×2 → [0,+∞) is a nonlinear elastic energy density,

• κ > 0 is a material constant,

• deformations y : Ω → R2 in GSBV (Ω),

• ∇y denotes the absolutely continuous part of their gradient,

• Jy is their jump set.
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How to define y(Ω) if y is not continuous?

Definition (Measure theoretical image)

Let y ∈ GSBV (Ω;R2) and let Ωd ⊆ Ω be the set of points where

y is approximately differentiable. We define yd by

yd(x) :=

 ỹ(x) for x ∈ Ωd ,

0 else,

where ỹ(x) denotes the Lebesgue value of y at x ∈ Ωd . Given a

measurable set E ⊆ Ω, we say that yd(E ) is the measure theoretic

image of E under the map y , and we denote it by [y(E )].
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Non-interpenetration in (G)SBV [A. Giacomini, M. Pon-

siglione]

Definition (Ciarlet-Nečas condition for GSBV -maps)

We say that y ∈ GSBV (Ω;R2) satisfies the Ciarlet-Nečas

non-interpenetration condition if det∇y(x) > 0 for a.e. x ∈ Ω

and ˆ
Ω
det∇y dx ≤ L2([y(Ω)]) . (CN)

▶ Equivalent to a.e. injectivity (in the domain).

▶ Minimizers of Griffith under (CN) exist.

▶ Its linearized counterpart is the contact condition:

[u](x) · νu(x) ≥ 0 for H1-a.e. x ∈ Ju, (CC)

u ∈ GSBD2(Ω) := {u ∈ GSBD(Ω) : e(u) ∈ L2,H1(Ju) < +∞}.
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A counterexample [S. Almi-E.D.-M. Friedrich ’22]

We construct a sequence of deformations

• (yε)ε ⊂ GSBV 2(Ω;R2)

• satisfying CN,

• such that their associated rescaled displacements

uε :=
1

ε
(yε − id) ,

have uniformly bounded linearized energies, i.e.,

sup
ε>0

F(uε) < +∞, where F(uε) := ∥e(uε)∥2L2(Ω)+H1(Juε) .

• uε goes in measure to a displacement u violating CC.
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A counterexample cont’d [S. Almi-E.D.-M. Friedrich ’22]

• Ω = (−1, 1)2

• u = (−1, 0)χ{x1>0}.

• Ju = {0} × (−1, 1),

• νu = e1,

• [u] = −e1.

⇒ [u] · νu = −1 < 0 on Ju ⇒ No CC.

• uε := (−1, 0)χ{x1>0} +
(
2
ε , 0

)
χ{−2ε<x1<0} , yε = id+ εuε .

• ∇yε = Id on Ω

• H1(Jyε) = 4

• uε → u in measure on Ω.

• yε satisfy CN since for ε small

[yε({x1 < −2ε})], [yε({−2ε < x1 < 0})], [yε({x1 > 0})]

are pairwise disjoint.
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A counterexample cont’d [S. Almi-E.D.-M. Friedrich ’22]

Ω yε(Ω)

yε

Key point: The length of the jump along the sequence has twice

the size of the limiting jump.

8



Griffith type models for nonsimple materials

Eε(y) =


ε−2

ˆ
Ω′

W (∇y(x)) dx + ε−2β

ˆ
Ω′

|∇2y(x)|2 dx + κH1(Jy )

if J∇y ⊆ Jy ,

+∞ else in GSBV 2
2 (Ω;R2).

• W is a continuous, frame-indifferent, one-well density with

quadratic growth from SO(2) from below

• κ > 0, β ∈ (23 , 1), Ω ⊆ Ω′.

• GSBV 2
2 (Ω;R2):=

{
y ∈ GSBV 2(Ω;R2) : ∇y∈GSBV 2

}
.
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Linearized Griffith models under non-interpenetration [A.

Chambolle, S. Conti, V. Crismale, G. Francfort, M. Focardi,

F. Iurlano, M. Friedrich...][M. Friedrich ’20]

E(u) :=
ˆ
Ω′

1

2
Q(e(u)) dx + κH1(Ju),

• Q(F) = D2W (Id)F : F for all F ∈ R2×2.

• u ∈ GSBD2(Ω;R2).

Natural question:

1. Is E with CC the right linearization for Eε with CN?

No⇒
Second counterexample
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A second counterexample [S. Almi-E.D.-M. Friedrich’22]

• Ω = (−1, 1)2,

• µ = (µ1, µ2) ∈ R2, µ1, µ2 < 0,

• u = (µ1
2 , µ2)χ{x1>0}.

• Ju = {0} × (−1, 1) has length H1(Ju) = 2 and normal

vector νu = e1. Hence, [u] · e1 = µ1
2 < 0 on Ju ⇒ No CC
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A second counterexample cont’d [S. Almi-E.D.-M.

Friedrich’22]

Ω

ε|µ2|

ε|µ1|

yε

yε(Ω)

lim
ε→0

H1(Jyε) = 3 + 2
|µ1|
|µ2|

, H1(Ju) = 2

⇒ Besides κH1(Ju), there should be an additional anisotropic

surface term being positive whenever CC is violated, depending

on the orientation and on the amplitude of the jump of u.
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Positive results for energy-convergent sequences

▶ Boundary conditions on Ω′ \ Ω?
For h ∈ W 2,∞(Ω′;R2) and ε > 0 we set

Sε,h = {y ∈ GSBV 2
2 (Ω

′;Rd) : y = id+ εh on Ω′ \ Ω}.

▶ Which notion of convergence?

• In general, compactness for (uε)ε if supε Eε(yε) < +∞.

• For bodies undergoing fracture no compactness can be

expected: take, e.g., yε := idχΩ′\B + R idχB , for a small ball

B ⊂ Ω and a rotation R ∈ SO(2), R ̸= Id. Then

|uε|, |∇uε| → ∞ on B as ε → 0.

• This phenomenon can be avoided if the deformation is rotated

back to the identity on the set B.
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Positive results for energy-convergent sequences cont’d

Definition (Asymptotic representation)

Fix γ ∈ (23 , β). We say that (yε)ε with yε ∈ Sε,h is asymptotically

represented by u ∈ GSBD2
h(Ω

′), and write yε ⇝ u, if there exist

sequences of Caccioppoli partitions (Pε
j )j of Ω

′ and corresponding

rotations (Rε
j )j ⊂ SO(2) such that, setting

y rotε :=
∞∑
j=1

Rε
j yε χPε

j
and uε :=

1

ε
(y rotε − id),

the following conditions hold:

∥sym(∇y rotε )− Id∥L2(Ω′) ≤ Cε,

∥∇y rotε − Id∥L2(Ω′) ≤ Cεγ ,

|∇y rotε − Id| ≤ C
(
εγ + dist(∇y rotε , SO(2))

)
a.e. on Ω′
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Positive results for energy-convergent sequences cont’d

Definition (Asymptotic representation cont’d)

Additionally:

uε → u a.e. in Ω′ \ Eu,

e(uε) ⇀ e(u) weakly in L2(Ω′ \ Eu;R2×2
sym),

H1(Ju) ≤ lim inf
ε→0

H1(Juε) ≤ lim inf
ε→0

H1(Jyε ∪ J∇yε),

e(u) = 0 on Eu, H1
(
(∂∗Eu ∩ Ω′) \ Ju

)
= H1(Ju ∩ (Eu)

1) = 0,

where Eu := {x ∈ Ω : |uε(x)| → ∞} is a set of finite perimeter

(compactness result in [A. Chambolle-V. Crismale ’21]).

Key point: u is not unique. It depends on partitions and rotations.
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Positive results for energy-convergent sequences cont’d

We have the following compactness result for asymptotic

representations.

Proposition (Compactness [M. Friedrich ’20])

Let (yε)ε be a sequence satisfying yε ∈ Sε,h and

supε Eε(yε) < +∞. Then there exists a subsequence (not

relabeled) and u ∈ GSBD2
h(Ω

′) such that yε ⇝ u.
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Our results [S. Almi-E.D.-M. Friedrich ’22]

Theorem (From CN to CC)

Let (yε)ε be a sequence satisfying yε ∈ Sε,h and CN. Let

u ∈ GSBD2
h(Ω

′) be such that yε ⇝ u and Eε(yε) → E(u) as
ε → 0. Then, u satisfies CC on Ju \ ∂∗Eu.

Theorem (Existence of energy-convergent sequences)

Let Ω ⊂ Ω′ ⊂ R2 be bounded Lipschitz domains. Then, for every

u ∈ GSBD2
h(Ω

′) satisfying CC there exists a sequence (yε)ε

satisfying CN and such that yε ∈ Sε,h, yε ⇝ u, and

lim
ε→0

Eε(yε) = E(u).
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Going from CN to CC–proof idea

Area formula for a.e approximably differentiable maps: for

every measurable set E ⊂ Ω the function z 7→ m(y , z ,E ∩ Ωd) is

measurable andˆ
E
| det∇y(x)|dx =

ˆ
R2

m(y , z ,E ∩ Ωd) dz .

First remark: combining CN and the area formulaˆ
E
det∇yε dx = L2([yε(E )]) for all E ⊂ Ω measurable.

Strategy: by contradiction, suppose there exists a rectifiable set

J int ⊂ Ju with H1(J int) > 0 such that [u](x) · νu(x) < 0 for all

x ∈ J int. By blow-up around points in J int, we construct Eε ⊆ Ω

such that ˆ
Eε

det(∇yε) dx > L2([yε(Eε)]).
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Existence of energy-convergent sequences–proof idea

Lemma (Stronger contact condition)

Given h ∈ W r ,∞(Ω;R2) for r ∈, let u ∈ GSBD2
h(Ω

′) satisfy CC.

Then, there exist sequences (τn)n in (0,+∞) and (un)n in

GSBD2
h(Ω

′) such that

un → u in measure on Ω′,

lim
n→∞

∥e(un)− e(u)∥L2(Ω′) = 0,

lim
n→∞

H1(Jun) = H1(Ju),

lim
n→∞

H1
(
{x ∈ Jun : [un](x) · νun(x) ≤ 2τn}

)
= 0.
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Existence of energy-convergent sequences–proof idea

First step: prove that you can approximate maps in GSBD2
h

satisfying the stronger CC up to small sets with maps in SBV 2

satisfying the same. [Adaptation of [A.Chambolle-V.Crismale ’19],

[G.Cortesani-R. Toader’99], [M. Friedrich’20]]

Second step: Approximate u by vε ∈ W 2,∞(Ω′ \ Jvε ;R2) and

Jbadvε := {x ∈ Jvε : [vε](x) · νvε(x) ≤ τε}

consists of a finite number of segments (T i
ε)

nε
i=1.
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Existence of energy-convergent sequences–proof idea

Third step: Cover these segments by pairwise disjoint rectangles

R i
ε, i = 1, . . . , nε, of length H1(T i

ε) and height min{H1(T i
ε),

√
ε}

such that T i
ε separates R i

ε into two rectangles of length H1(T i
ε)

and height min{H1(T i
ε),

√
ε}/2.

H1(T i
ε)

min{H1(T i
ε),

√
ε}

2

T i
ε

R i
ε

T j
ε

R j
ε
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Existence of energy-convergent sequences–proof idea

Fourth step: define

wε := vεχΩ′\
⋃nε

i=1 R
i
ε
+

nε∑
i=1

s iεχR i
ε

for suitable constants (s iε)i ⊂ R2 for which the functions

yε := id+ εwε are such that the sets

[
yε
(
Ω′ \

nε⋃
i=1

R i
ε

)]
, [yε(R

i
ε)], i = 1, . . . , nε, are pairwise disjoint.

Fifth step: show that (yε) satisfy CN.
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Summarizing

• In general CN and CC are not related via linearization, and

the variational linearization of Griffith under CN is not the

linearized Griffith.

• For energy-convergent sequences, instead, the passage CN to

CC holds true and we also have the converse approximation

result.

Preprint https://arxiv.org/abs/2204.10622 available on

asc.tuwien.ac.at/∼edavoli/

Thank you for your attention!
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Technical condition on Ω and Ω′

Geometrical assumption on the Dirichlet part of the boundary

∂DΩ := Ω′ ∩ ∂Ω:

∂Ω = ∂DΩ ∪ ∂NΩ ∪ N with

∂DΩ, ∂NΩ relatively open, Hd−1(N) = 0,

∂DΩ ∩ ∂NΩ = ∅, ∂(∂DΩ) = ∂(∂NΩ),

and there exist δ̄ > 0 small and x0 ∈ Rd such that for all δ ∈ (0, δ̄)

there holds

Oδ,x0(∂DΩ) ⊂ Ω,

where Oδ,x0(x) := x0 + (1− δ)(x − x0).
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Definition of GBD

Basic notation for the slicing technique. For ξ ∈ S1, we let

Πξ := {w ∈ R2 : w · ξ = 0} ,

and for any w ∈ R2, B ⊂ R2, and u : B → R2 we let

Bξ
w := {t ∈ R : w + tξ ∈ B}, ûξy (t) := u(y + tξ) · ξ.

Let also

J1ûξy := {t ∈ Jûξy (t) : [(û
ξ
y )

+(t)− (ûξy )
−(t)] ≥ 1}.

GBD(Ω) is the space of L2-measurable functions such that there

exists a bounded Radon measure λ such thatˆ
Πξ

(|Dûξy |(Bξ
y \ J1ûξy ) +H0(Bξ

y ∩ J1ûξy ))dH1(y) ≤ λ(B).
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