Quasiconvexity and nonlinear Elasticity

André Guerra

Institute for Theoretical Studies, ETH Zürich
April 4, 2023

The classical Calculus of Variations

We are interested in minimizers of

$$
\mathscr{F}[u] \equiv \int_{\Omega} F(\mathrm{D} u) \mathrm{d} x, \quad u: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m},
$$

where $F: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ and $m, n \geq 2$.

The classical Calculus of Variations

We are interested in minimizers of

$$
\mathscr{F}[u] \equiv \int_{\Omega} F(\mathrm{D} u) \mathrm{d} x, \quad u: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m},
$$

where $F: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ and $m, n \geq 2$.
A crucial feature in vectorial problems is that F is often non-convex.
In nonlinear Elasticity, F is the stored-energy function of an elastic material with reference configuration Ω.

Neo-Hookean models

Non-uniqueness of solutions $\Longrightarrow F$ is not convex!

Image from the book by Marsden and Hughes

Neo-Hookean models

Non-uniqueness of solutions $\Longrightarrow F$ is not convex!

Image from the book by Marsden and Hughes

In a neo-Hookean model, F may take the form

$$
\begin{equation*}
F(\mathrm{D} u)=G\left(\frac{|\mathrm{D} u|^{n}}{\operatorname{det} \mathrm{D} u}\right)+H(\operatorname{det} \mathrm{D} u) \tag{NH}
\end{equation*}
$$

known as the additive isochoric-volumetric split (Flory 1961).

Quasiconvexity

Natural existence condition for min problems is quasiconvexity:

$$
|\Omega| F(A) \leq \int_{\Omega} F(\mathrm{D} u) \mathrm{d} x \quad \text { for all } u \in A+C_{c}^{\infty}\left(\Omega, \mathbb{R}^{m}\right)
$$

i.e. linear maps are minimizers.

Quasiconvexity

Natural existence condition for min problems is quasiconvexity:

$$
|\Omega| F(A) \leq \int_{\Omega} F(\mathrm{D} u) \mathrm{d} x \quad \text { for all } u \in A+C_{c}^{\infty}\left(\Omega, \mathbb{R}^{m}\right)
$$

i.e. linear maps are minimizers. Equivalently, $F\left(f_{\Omega} D u\right) \leq f_{\Omega} F(D u)$.

Quasiconvexity

Natural existence condition for min problems is quasiconvexity:

$$
|\Omega| F(A) \leq \int_{\Omega} F(\mathrm{D} u) \mathrm{d} x \quad \text { for all } u \in A+C_{c}^{\infty}\left(\Omega, \mathbb{R}^{m}\right)
$$

i.e. linear maps are minimizers. Equivalently, $F\left(f_{\Omega} D u\right) \leq f_{\Omega} F(D u)$.

Assuming that $|F| \leq C\left(1+|\cdot|^{p}\right)$,
F is quasiconvex $\Longleftrightarrow \exists$ minimizers in $W^{1, p}$.
Morrey '52, Meyers '65, Ball-Murat '84, Marcellini '86, Acerbi-Fusco '87, FonsecaMalý '97, Chen-Kristensen '15...

Quasiconvexity

Natural existence condition for min problems is quasiconvexity:

$$
|\Omega| F(A) \leq \int_{\Omega} F(\mathrm{D} u) \mathrm{d} x \quad \text { for all } u \in A+C_{c}^{\infty}\left(\Omega, \mathbb{R}^{m}\right)
$$

i.e. linear maps are minimizers. Equivalently, $F\left(f_{\Omega} D u\right) \leq f_{\Omega} F(D u)$.

Assuming that $|F| \leq C\left(1+|\cdot|^{p}\right)$,

$$
F \text { is quasiconvex } \Longleftrightarrow \exists \text { minimizers in } W^{1, p} .
$$

Morrey '52, Meyers '65, Ball-Murat '84, Marcellini '86, Acerbi-Fusco '87, FonsecaMalý '97, Chen-Kristensen '15...

The growth condition fails for (NH):

Open Problem (Ball-Murat 1984, Ball 2002)

Prove existence of minimizers for quasiconvex F satisfying

$$
\operatorname{det} A \rightarrow 0 \Longrightarrow|F(A)| \rightarrow \infty
$$

Rank-one convexity

A main example is $F=\operatorname{det}$:

$$
|\Omega| \operatorname{det}(A)=\int_{\Omega} \operatorname{det}(\mathrm{D} u) \mathrm{d} x \quad \forall u \in A+C_{c}^{\infty}\left(\Omega, \mathbb{R}^{n}\right)
$$

Rank-one convexity

A main example is $F=\operatorname{det}$:

$$
|\Omega| \operatorname{det}(A)=\int_{\Omega} \operatorname{det}(\mathrm{D} u) \mathrm{d} x \quad \forall u \in A+C_{c}^{\infty}\left(\Omega, \mathbb{R}^{n}\right)
$$

In general we have
F is convex $\underset{ }{\Longleftrightarrow} F$ is quasiconvex $\Longrightarrow F$ is rank-one convex.
We say that F is rank-one convex if, for $\lambda \in(0,1)$,

$$
F(\lambda A+(1-\lambda) B) \leq \lambda F(A)+(1-\lambda) F(B)
$$

when $\operatorname{rank}(B-A)=1$. Equiv: Euler-Lagrange system is elliptic.

Morrey's problem

Recall that $F: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ and the maps are $u: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

Morrey's Problem (1952)

F is rank-one convex $\Longrightarrow F$ is quasiconvex?

Morrey's problem

Recall that $F: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ and the maps are $u: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

Morrey's Problem (1952)

$$
F \text { is rank-one convex } \Longrightarrow F \text { is quasiconvex? }
$$

Counter-examples:
-Šverák 1992: if $m \geq 3, n \geq 2, N O$!

Morrey's problem

Recall that $F: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ and the maps are $u: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

Morrey's Problem (1952)

$$
F \text { is rank-one convex } \Longrightarrow F \text { is quasiconvex? }
$$

Counter-examples:

- Šverák 1992: if $m \geq 3, n \geq 2, \mathrm{NO}$!
- Grabovsky 2016: if $m \geq 8, n \geq 2$, NO!

Morrey's problem

Recall that $F: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ and the maps are $u: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

Morrey's Problem (1952)

$$
F \text { is rank-one convex } \Longrightarrow F \text { is quasiconvex? }
$$

Counter-examples:

- Šverák 1992: if $m \geq 3, n \geq 2$, NO!
- Grabovsky 2016: if $m \geq 8, n \geq 2$, NO!

In particular,

- The case $m=2, n \geq 2$ is OPEN.

Work on this problem by Ball, Šverák, Müller, Dacorogna, Pedregal, Kirchheim, Iwaniec, Astala, Székelyhidi, Faraco...

The main result

Notation: $\mathbb{R}_{+}^{2 \times 2} \equiv\left\{A \in \mathbb{R}^{2 \times 2}: \operatorname{det} A>0\right\}, K_{A} \equiv \frac{|A|^{2}}{\operatorname{det} A}$.

The main result

Notation: $\mathbb{R}_{+}^{2 \times 2} \equiv\left\{A \in \mathbb{R}^{2 \times 2}: \operatorname{det} A>0\right\}, K_{A} \equiv \frac{|A|^{2}}{\operatorname{det} A}$.
Theorem (Astala-Faraco-G.-Koski-Kristensen 2023)
Let $F: \mathbb{R}_{+}^{2 \times 2} \rightarrow \mathbb{R}$ be as in (NH):

$$
F(A)=G\left(K_{A}\right)+H(\operatorname{det} A)
$$

where H is convex. Then

The main result

Notation: $\mathbb{R}_{+}^{2 \times 2} \equiv\left\{A \in \mathbb{R}^{2 \times 2}: \operatorname{det} A>0\right\}, K_{A} \equiv \frac{|A|^{2}}{\operatorname{det} A}$.

Theorem (Astala-Faraco-G.-Koski-Kristensen 2023)

Let $F: \mathbb{R}_{+}^{2 \times 2} \rightarrow \mathbb{R}$ be as in (NH):

$$
F(A)=G\left(K_{A}\right)+H(\operatorname{det} A)
$$

where H is convex. Then
F is rank-one convex $\Longrightarrow F$ is quasiconvex
$\Longrightarrow F$ is wlsc

The main result

Notation: $\mathbb{R}_{+}^{2 \times 2} \equiv\left\{A \in \mathbb{R}^{2 \times 2}: \operatorname{det} A>0\right\}, K_{A} \equiv \frac{|A|^{2}}{\operatorname{det} A}$.

Theorem (Astala-Faraco-G.-Koski-Kristensen 2023)

Let $F: \mathbb{R}_{+}^{2 \times 2} \rightarrow \mathbb{R}$ be as in (NH):

$$
F(A)=G\left(K_{A}\right)+H(\operatorname{det} A)
$$

where H is convex. Then

$$
\begin{aligned}
F \text { is rank-one convex } & \Longrightarrow F \text { is quasiconvex } \\
& \Longrightarrow F \text { is wlsc }
\end{aligned}
$$

in the sense that, if g is a diffeomorphism and $q>1$,

$$
\left.\begin{array}{l}
u_{j}=g \text { on } \partial \Omega \\
u_{j} \rightharpoonup u \text { in } W^{1,2}(\Omega) \\
\left\|K u_{j}\right\|_{L^{q}(\Omega)} \leq C
\end{array}\right\} \Longrightarrow \liminf _{j \rightarrow \infty} \int_{\Omega} F\left(\mathrm{D} u_{j}\right) \mathrm{d} x \geq \int_{\Omega} F(\mathrm{D} u) \mathrm{d} x .
$$

Main ingredients

There are four main ingredients in the proof.
Rank-one convexity \Longrightarrow quasiconvexity:

1) extremal integrands;
2) the Burkholder function;

Quasiconvexity \Longrightarrow weak lower semicontinuity:
3) Jensen inequalities for principal maps;
4) Stoilow factorization.

Rank-one convexity \Longrightarrow quasiconvexity

1: Extremal integrands

Krein-Milman: if K is compact and convex, $K=\operatorname{conv}($ Extreme $(K))$.

1: Extremal integrands

Krein-Milman: if K is compact and convex, $K=\operatorname{conv(Extreme(K)).~}$ G. 2018: still holds when $K=\{r a n k-1$ convex integrands $\}$; explicit examples of integrands in Extreme (K).

1: Extremal integrands

Krein-Milman: if K is compact and convex, $K=\operatorname{conv(Extreme(K)).~}$ G. 2018: still holds when $K=\{r a n k-1$ convex integrands $\}$; explicit examples of integrands in Extreme (K).

Proposition (Voss-Martin-Ghiba-Neff 2021)

For F as in the theorem,

$$
F \text { is rank-one convex } \Longrightarrow F=G+c \mathscr{W}
$$

where $c \geq 0, G$ is polyconvex and

$$
\mathscr{W}(A) \equiv K_{A}-\log K_{A}+\log \operatorname{det} A
$$

1: Extremal integrands

Krein-Milman: if K is compact and convex, $K=\operatorname{conv(Extreme(K)).~}$ G. 2018: still holds when $K=\{r a n k-1$ convex integrands $\}$; explicit examples of integrands in Extreme (K).

Proposition (Voss-Martin-Ghiba-Neff 2021)

For F as in the theorem,

$$
F \text { is rank-one convex } \Longrightarrow F=G+c \mathscr{W}
$$

where $c \geq 0, G$ is polyconvex and

$$
\mathscr{W}(A) \equiv K_{A}-\log K_{A}+\log \operatorname{det} A
$$

Recall G is polyconvex if $G=g(A, \operatorname{det} A)$ and $g: \mathbb{R}^{5} \rightarrow \mathbb{R}$ is convex.

1: Extremal integrands

Krein-Milman: if K is compact and convex, $K=\operatorname{conv(Extreme(K)).~}$ G. 2018: still holds when $K=\{r a n k-1$ convex integrands $\}$; explicit examples of integrands in Extreme (K).

Proposition (Voss-Martin-Ghiba-Neff 2021)

For F as in the theorem,

$$
F \text { is rank-one convex } \Longrightarrow F=G+c \mathscr{W}
$$

where $c \geq 0, G$ is polyconvex and

$$
\mathscr{W}(A) \equiv K_{A}-\log K_{A}+\log \operatorname{det} A
$$

Recall G is polyconvex if $G=g(A$, $\operatorname{det} A)$ and $g: \mathbb{R}^{5} \rightarrow \mathbb{R}$ is convex. \mathscr{W} is not polyconvex, since

$$
\lim _{t \rightarrow 0} \mathscr{W}(t \mathrm{Id})=\lim _{t \rightarrow 0} 1+\log \left(t^{2}\right)=-\infty
$$

But it suffices to prove the theorem for \mathscr{W}.

2: The Burkholder function

\mathscr{W} is closely connected to the Burkholder function (1984)

$$
B_{p}(A)=\left(\left(\frac{p}{2}-1\right)|A|^{2}-\frac{p}{2} \operatorname{det} A\right)|A|^{p-2}, \quad p \geq 2
$$

2: The Burkholder function

\mathscr{W} is closely connected to the Burkholder function (1984)

$$
B_{p}(A)=\left(\left(\frac{p}{2}-1\right)|A|^{2}-\frac{p}{2} \operatorname{det} A\right)|A|^{p-2}, \quad p \geq 2
$$

It is an L^{p} version of the determinant:

- $B_{p}(\mathrm{Id})=-1$ and $B_{2}=-\operatorname{det} ;$

2: The Burkholder function

\mathscr{W} is closely connected to the Burkholder function (1984)

$$
B_{p}(A)=\left(\left(\frac{p}{2}-1\right)|A|^{2}-\frac{p}{2} \operatorname{det} A\right)|A|^{p-2}, \quad p \geq 2
$$

It is an L^{p} version of the determinant:

- $B_{p}(\mathrm{Id})=-1$ and $B_{2}=-\operatorname{det} ;$
- $B_{p}(t A)=t^{p} B_{p}(A)$ for $t>0$;

2: The Burkholder function

\mathscr{W} is closely connected to the Burkholder function (1984)

$$
B_{p}(A)=\left(\left(\frac{p}{2}-1\right)|A|^{2}-\frac{p}{2} \operatorname{det} A\right)|A|^{p-2}, \quad p \geq 2
$$

It is an L^{p} version of the determinant:

- $B_{p}(\mathrm{Id})=-1$ and $B_{2}=-\operatorname{det}$;
- $B_{p}(t A)=t^{p} B_{p}(A)$ for $t>0$;
- $B_{p}(Q A R)=B_{p}(A)$ for $Q, R \in \mathrm{SO}(2)$;

2: The Burkholder function

\mathscr{W} is closely connected to the Burkholder function (1984)

$$
B_{p}(A)=\left(\left(\frac{p}{2}-1\right)|A|^{2}-\frac{p}{2} \operatorname{det} A\right)|A|^{p-2}, \quad p \geq 2
$$

It is an L^{p} version of the determinant:

- $B_{p}(\mathrm{Id})=-1$ and $B_{2}=-$ det;
- $B_{p}(t A)=t^{p} B_{p}(A)$ for $t>0$;
- $B_{p}(Q A R)=B_{p}(A)$ for $Q, R \in \mathrm{SO}(2)$;
- B_{p} is rank-one convex.

2: The Burkholder function

\mathscr{W} is closely connected to the Burkholder function (1984)

$$
B_{p}(A)=\left(\left(\frac{p}{2}-1\right)|A|^{2}-\frac{p}{2} \operatorname{det} A\right)|A|^{p-2}, \quad p \geq 2
$$

It is an L^{p} version of the determinant:

- $B_{p}(\mathrm{Id})=-1$ and $B_{2}=-\operatorname{det} ;$
- $B_{p}(t A)=t^{p} B_{p}(A)$ for $t>0$;
- $B_{p}(Q A R)=B_{p}(A)$ for $Q, R \in \mathrm{SO}(2)$;
- B_{p} is rank-one convex.

Conjecture (Iwaniec 1990s)

The Burkholder function is quasiconvex.
This conj has huge implications in harmonic and complex analysis.

2: The Burkholder function (continued)

Theorem (G.-Kristensen 2022, AFGKK 2023)
If $u \in A+C_{c}^{\infty}\left(\Omega, \mathbb{R}^{2}\right)$ and $B_{p}(\mathrm{D} u)$ doesn't change sign, then

$$
|\Omega| B_{p}(A) \leq \int_{\Omega} B_{p}(\mathrm{D} u) \mathrm{d} x
$$

2: The Burkholder function (continued)

Theorem (G.-Kristensen 2022, AFGKK 2023)

If $u \in A+C_{c}^{\infty}\left(\Omega, \mathbb{R}^{2}\right)$ and $B_{p}(\mathrm{D} u)$ doesn't change sign, then

$$
|\Omega| B_{p}(A) \leq \int_{\Omega} B_{p}(\mathrm{D} u) \mathrm{d} x
$$

Earlier results by Astala-Iwaniec-Prause-Saksman 2012-2015.
Our proof combines their complex interpolation argument with an extremality argument using gradient Young Measures, cf. G. 2018.

2: The Burkholder function (continued)

What is the connection with \mathscr{W} ?

2: The Burkholder function (continued)

What is the connection with \mathscr{W} ?

Consider the involution

$$
\widehat{F}(A) \equiv F\left(A^{-1}\right) \operatorname{det} A
$$

Its characteristic property is that, if $v=u^{-1}$ is a diffeo,

$$
\int_{\Omega} F(\mathrm{D} u) \mathrm{d} x=\int_{u(\Omega)} \widehat{F}(\mathrm{D} v) \mathrm{d} y
$$

. preserves poly-, quasi- and rank-one convexity, but not convexity.

2: The Burkholder function (continued)

What is the connection with \mathscr{W} ?

Consider the involution

$$
\widehat{F}(A) \equiv F\left(A^{-1}\right) \operatorname{det} A
$$

Its characteristic property is that, if $v=u^{-1}$ is a diffeo,

$$
\int_{\Omega} F(\mathrm{D} u) \mathrm{d} x=\int_{u(\Omega)} \widehat{F}(\mathrm{D} v) \mathrm{d} y
$$

$\widehat{\imath}$ preserves poly-, quasi- and rank-one convexity, but not convexity. One can calculate

$$
\begin{aligned}
& \mathscr{F}(A) \equiv \lim _{p \searrow 2} 2 \frac{B_{p}(A)+\operatorname{det} A}{p-2}=|A|^{2}-\left(1+\log |A|^{2}\right) \operatorname{det} A \\
& \mathscr{W}(A)=\widehat{\mathscr{F}}(A)+1
\end{aligned}
$$

2: The Burkholder function (continued)

Corollary
If $u \in A+C_{c}^{\infty}\left(\Omega, \mathbb{R}^{2}\right)$ is a smooth diffeo then

$$
\begin{aligned}
|\Omega| \mathscr{F}(A) & \leq \int_{\Omega} \mathscr{F}(\mathrm{D} u) \mathrm{d} x \\
|\Omega| \mathscr{W}(A) & \leq \int_{\Omega} \mathscr{W}(\mathrm{D} u) \mathrm{d} x
\end{aligned}
$$

2: The Burkholder function (continued)

Corollary

If $u \in A+C_{c}^{\infty}\left(\Omega, \mathbb{R}^{2}\right)$ is a smooth diffeo then

$$
\begin{aligned}
|\Omega| \mathscr{F}(A) & \leq \int_{\Omega} \mathscr{F}(\mathrm{D} u) \mathrm{d} x \\
|\Omega| \mathscr{W}(A) & \leq \int_{\Omega} \mathscr{W}(\mathrm{D} u) \mathrm{d} x
\end{aligned}
$$

These are sharp versions of Müller 1990, Koskela-Onninen 2008. For instance, locally,

$$
u \in W^{1,2}, \operatorname{det} \mathrm{D} u \geq 0 \quad \Longrightarrow \quad \operatorname{det} \mathrm{D} u \in L \log L
$$

2: The Burkholder function (continued)

Corollary

If $u \in A+C_{c}^{\infty}\left(\Omega, \mathbb{R}^{2}\right)$ is a smooth diffeo then

$$
\begin{aligned}
|\Omega| \mathscr{F}(A) & \leq \int_{\Omega} \mathscr{F}(\mathrm{D} u) \mathrm{d} x \\
|\Omega| \mathscr{W}(A) & \leq \int_{\Omega} \mathscr{W}(\mathrm{D} u) \mathrm{d} x
\end{aligned}
$$

These are sharp versions of Müller 1990, Koskela-Onninen 2008. For instance, locally,

$$
u \in W^{1,2}, \operatorname{det} \mathrm{D} u \geq 0 \quad \Longrightarrow \quad \operatorname{det} \mathrm{D} u \in L \log L
$$

Here we show:

$$
\int_{\Omega} \operatorname{det} \mathrm{D} u \log |\mathrm{D} u|^{2} \mathrm{~d} x \leq \int_{\Omega}|\mathrm{D} u|^{2} \mathrm{~d} x-|\Omega|(\mathscr{F}(A)+1) .
$$

Quasiconvexity \Longrightarrow weak Isc

3: Jensen inequalities for principal maps

A map $u: \mathbb{C} \rightarrow \mathbb{C}$ is principal if

$$
u(z)=z+\sum_{j=1}^{\infty} \frac{b_{j}}{z^{j}} \quad \text { when }|z|>1
$$

3: Jensen inequalities for principal maps

A map $u: \mathbb{C} \rightarrow \mathbb{C}$ is principal if

$$
u(z)=z+\sum_{j=1}^{\infty} \frac{b_{j}}{z^{j}} \quad \text { when }|z|>1
$$

Note that this generalizes maps which are linear on \mathbb{S}^{1} :

$$
u(z)=z+b_{1} \bar{z}
$$

3: Jensen inequalities for principal maps

A map $u: \mathbb{C} \rightarrow \mathbb{C}$ is principal if

$$
u(z)=z+\sum_{j=1}^{\infty} \frac{b_{j}}{z^{j}} \quad \text { when }|z|>1
$$

Note that this generalizes maps which are linear on \mathbb{S}^{1} :

$$
u(z)=z+b_{1} \bar{z}=z+b_{1} \frac{1}{z} \text { on } \mathbb{S}^{1}
$$

so can extend u to be a principal map.

3: Jensen inequalities for principal maps

A map $u: \mathbb{C} \rightarrow \mathbb{C}$ is principal if

$$
u(z)=z+\sum_{j=1}^{\infty} \frac{b_{j}}{z^{j}} \quad \text { when }|z|>1
$$

Note that this generalizes maps which are linear on \mathbb{S}^{1} :

$$
u(z)=z+b_{1} \bar{z}=z+b_{1} \frac{1}{z} \text { on } \mathbb{S}^{1}
$$

so can extend u to be a principal map.

Theorem (AFGKK 2023)

Let $u \in W_{\text {loc }}^{1,1}(\mathbb{C})$ be a principal map with $K_{u} \in L^{1}(\mathbb{D})$. Then

$$
\mathscr{W}\left(f_{\mathbb{D}} \mathrm{D} u \mathrm{~d} x\right) \leq f_{\mathbb{D}} \mathscr{W}(\mathrm{D} u) \mathrm{d} x
$$

This is a Jensen inequality without linear boundary conditions!

3: Jensen inequalities for principal maps (continued)

Recall: $\mathscr{W}(A)=K_{A}-\log K_{A}+\log \operatorname{det} A$. If $b_{1}=0$, want to show:

$$
\mathscr{W}(\mathrm{Id}) \leq f_{\mathbb{D}} \mathscr{W}(\mathrm{D} u) \mathrm{d} x
$$

3: Jensen inequalities for principal maps (continued)

Recall: $\mathscr{W}(A)=K_{A}-\log K_{A}+\log \operatorname{det} A$. If $b_{1}=0$, want to show:

$$
\mathscr{W}(\mathrm{ld}) \leq f_{\mathbb{D}} \mathscr{W}(\mathrm{D} u) \mathrm{d} x
$$

Since $u=\mathrm{Id}$ at ∞, by quasiconvexity we have

$$
0 \leq \int_{\mathbb{C}}[\mathscr{W}(\mathrm{D} u)-\mathscr{W}(\mathrm{Id})] \mathrm{d} x
$$

3: Jensen inequalities for principal maps (continued)

Recall: $\mathscr{W}(A)=K_{A}-\log K_{A}+\log \operatorname{det} A$. If $b_{1}=0$, want to show:

$$
\mathscr{W}(\mathrm{ld}) \leq f_{\mathbb{D}} \mathscr{W}(\mathrm{D} u) \mathrm{d} x
$$

Since $u=\mathrm{Id}$ at ∞, by quasiconvexity we have

$$
0 \leq \int_{\mathbb{C}}[\mathscr{W}(\mathrm{D} u)-\mathscr{W}(\mathrm{Id})] \mathrm{d} x
$$

The main point is that, when u is holomorphic, ψ is harmonic:

$$
\psi \equiv \mathscr{W}(\mathrm{D} u)-\mathscr{W}(\mathrm{Id})=2 \log \left|u^{\prime}\right|
$$

3: Jensen inequalities for principal maps (continued)

Recall: $\mathscr{W}(A)=K_{A}-\log K_{A}+\log \operatorname{det} A$. If $b_{1}=0$, want to show:

$$
\mathscr{W}(\mathrm{Id}) \leq f_{\mathbb{D}} \mathscr{W}(\mathrm{D} u) \mathrm{d} x
$$

Since $u=\mathrm{Id}$ at ∞, by quasiconvexity we have

$$
0 \leq \int_{\mathbb{C}}[\mathscr{W}(\mathrm{D} u)-\mathscr{W}(\mathrm{Id})] \mathrm{d} x
$$

The main point is that, when u is holomorphic, ψ is harmonic:

$$
\psi \equiv \mathscr{W}(\mathrm{D} u)-\mathscr{W}(\mathrm{Id})=2 \log \left|u^{\prime}\right|
$$

Applying the mean value at ∞, we get

$$
0=\psi(\infty)=\int_{\mathbb{C} \backslash \mathbb{D}} \psi \mathrm{d} x=\int_{\mathbb{C} \backslash \mathbb{D}}[\mathscr{W}(\mathrm{D} u)-\mathscr{W}(\mathrm{Id})] \mathrm{d} x
$$

i.e. $\mathbb{C} \backslash \mathbb{D}$ is a null quadrature domain (Sakai 1981).

4: Stoilow Factorization

Proposition (AFGKK 2023)

Let g be a diffeo, $q>1$. For any sequence u_{j} we have

4: Stoilow Factorization

Proposition (AFGKK 2023)

Let g be a diffeo, $q>1$. For any sequence u_{j} we have

By YM machinery wlog can take $\mathrm{D} u_{j} \rightharpoonup \mathrm{Id}$. Want to replace u_{j} with a better sequence (cf. Astala-Faraco 2002).

4: Stoilow Factorization

Proposition (AFGKK 2023)

Let g be a diffeo, $q>1$. For any sequence u_{j} we have

By YM machinery wlog can take $\mathrm{D} u_{j} \rightharpoonup \mathrm{Id}$. Want to replace u_{j} with a better sequence (cf. Astala-Faraco 2002).
Iwaniec-Šverák 1992: \exists holomorphic h_{j}, principal maps f_{j} with

$$
u_{j}=h_{j} \circ f_{j}
$$

with $h_{j}(z) \rightarrow z$ in $C_{\text {loc }}^{\infty}$.

4: Stoilow Factorization

Proposition (AFGKK 2023)

Let g be a diffeo, $q>1$. For any sequence u_{j} we have $\left.\begin{array}{l}u_{j}=g \text { on } \partial \Omega \\ u_{j} \rightharpoonup u \text { in } W^{1,2}(\Omega) \\ \left\|K u_{j}\right\|_{L^{q}(\Omega)} \leq C\end{array}\right\} \Longrightarrow \liminf _{j \rightarrow \infty} \int_{\Omega} \mathscr{W}\left(\mathrm{D} u_{j}\right) \mathrm{d} x \geq \int_{\Omega} \mathscr{W}(\mathrm{D} u) \mathrm{d} x$.

By YM machinery wlog can take $\mathrm{D} u_{j} \rightharpoonup \mathrm{Id}$. Want to replace u_{j} with a better sequence (cf. Astala-Faraco 2002).
Iwaniec-Šverák 1992: \exists holomorphic h_{j}, principal maps f_{j} with

$$
u_{j}=h_{j} \circ f_{j}
$$

with $h_{j}(z) \rightarrow z$ in $C_{\text {loc }}^{\infty}$. Then apply Jensen's ineq for principal maps:

$$
\liminf _{j \rightarrow \infty} f_{\mathbb{D}} \mathscr{W}\left(\mathrm{D} u_{j}\right) \mathrm{d} x=\liminf _{j \rightarrow \infty} f_{\mathbb{D}} \mathscr{W}\left(\mathrm{D} f_{j}\right) \mathrm{d} x \geq \mathscr{W}(\mathrm{Id})
$$

Proof outline

Outlook

Further directions: regularity

We have seen that, when combined,

- Jensen inequalities for principal maps
- the Stoilow factorization
yield existence theorems without growth conditions.
Question
Can these tools be used to prove regularity results?

Even in the simple polyconvex example

$$
F(A)=|A|^{2}\left(1+\frac{1}{(\operatorname{det} A)^{2}}\right)
$$

almost nothing is known about regularity of minimizers, but see Bauman-Owen-Phillips 1991, Iwaniec-Kovalev-Onninen 2013.

