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Goal: Compute conformal parametrizations of surfaces.

Thurston’s idea: Circle packings as discrete conformal maps
approximating the Riemann mapping.
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Construct discrete conformal maps using circle packings.

Figure: From a region Ω to the nerve T of a circle packing.



Existence and uniqueness of discrete conformal maps are given by

Theorem (Koebe-Andre’ev-Thurston, 1936, 1971,1978)

Every oriented simplicial triangulation of the 2-disk determined a
circle packing of the 2-disk, unique up to Mobius transformations.



Thurston conjectured in 1985 the convergence of discrete
conformal maps, confirmed by Rodin-Sullivan in 1987.

Figure: Approximating the Riemann mapping.1

1Picture by Stephenson, Introduction to circle packing, 2002.
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Every oriented simplicial triangulation of the 2-disk determined a
circle packing of the 2-disk, unique up to Mobius transformations.

Thurston conjectured in 1985 the convergence of discrete
conformal maps, confirmed by

Theorem (Rodin-Sullivan, 1987)

The discrete conformal map of circle packings converges to the
Riemann mapping on a simply connected domain.



Idea of the proof of Rodin-Sullivan

Step 1 Construct simplicial homeomorphisms using circle
packings to the 2-disk.

Step 2 Show that these simplicial homeomorphisms are
K -quasiconformal maps.

Step 3 Show the limit homeomorphism is 1-quasiconformal,
hence a conformal map.
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Step 1: Construct simplicial homeomorphisms from the KAT
theorem.

Figure: Discrete conformal maps are piecewise linear.



I A sequence of simplicial homeomorphisms fn : Ωn → Dn ⊂ D2,

I Clearly, Ωn ⊂ Ω and Ωn → Ω,

I It can be shown that Dn → D2 using a length-area relation.
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Step 2: fn are K -quasiconformal maps from the ring lemma.

Lemma (Ring lemma)

There exists a lower bound on the ratio of two adjacent radii.

This implies that the angles of triangles can not be too small.



Step 3: the limit f is an 1-quasiconformal map.

Theorem (Rodin-Sullivan, 1987)

A circle packing of a simply connected domain in the plane with
(infinite) hexagonal pattern is the regular hexagonal packing.



Idea of the proof of Rodin-Sullivan

Step 1 Construct simplicial homeomorphisms using circle
packings to the 2-disk from the KAT theorem.

Step 2 Show that these simplicial homeomorphisms are
K -quasiconformal maps from the ring lemma.

Step 3 Show the limit homeomorphism is 1-quasiconformal,
hence a conformal map from the rigidity of the
infinite hexagonal packing.

We will adapt this framework to prove the convergence of other
discrete conformal maps.
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Generalization of circle packings: inversive distance circle packings.

(a) 0 < Θ < 1, (b) Θ = 1, (c) Θ > 1.

Given a triangulation T of D2 with a weight Θ : E (T )→ R>0,
define a discrete metric l : E (T )→ R>0 on (D2,T ) as

lij =
√
r2i + 2Θri rj + r2j .

Inversive distance circle packings are more flexible.
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Figure: The inversive distance Θ between two circles.2

Θ =
l2ij − r2i − r2j

2ri rj
2Picture by Stephenson, Introduction to circle packing, 2002.



Figure: Discrete conformal maps using inversive distance circle packings.



Can we repeat this process for inversive distance circle packings?



Figure: Discrete conformal maps using inversive distance circle packings.

No KAT theorem for inversive distance circle packings!

Two issues: triangle inequalities and convexity.



Idea of the proof of Rodin-Sullivan

Step 1 Construct simplicial homeomorphisms using circle
packings to the 2-disk from the KAT theorem.

Step 2 Show that these simplicial homeomorphisms are
K -quasiconformal maps from the ring lemma.

Step 3 Show the limit homeomorphism is 1-quasiconformal,
hence a conformal map from the rigidity of the
infinite hexagonal packing.

Recipe from the work of Luo-Sun-Wu in 2022,

I Construct simplicial homeomorphisms using special
triangulations.

I Show the rigidity of the infinite hexagonal weighted
Delaunay inversive distance circle packings.
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Proposition

Suppose (P,T , l) is a flat polyhedral disk with an equilateral
triangulation T such that exactly three boundary vertices p, q, r
have curvature 2π

3 , and the metric l is an inversive distance circle
packing metric induced by a constant label u and a constant
weight Θ→ (1,+∞). Then for sufficiently large n, there is an
inversive distance circle packing ũ : V(n) → R for the n-th
standard subdivision (P,T(n), I(n)) such that

I Ki (ũ) = 0 for all vi ∈ V(n) − {p, q, r},
I Ki (ũ) = 2π

3 for all vi ∈ {p, q, r},

Figure: The n-th standard subdivision of one triangle.3

3Picture by Luo-Sun-Wu, 2022.



Figure: Discrete conformal maps using inversive distance circle packings.

No KAT theorem for inversive distance circle packings! But it
exists after sufficient subdivisions.



Theorem (Chen-L.-Xu-Zhang, 2022, arXiv:2211.07464)

Let Ω be a Jordan domain in the complex plane with three distinct
boundary points p, q, r specified. Let f be the Riemann mapping
from the equilateral triangle 4ABC to Ω such that f (A) = p,
f (B) = q, f (C ) = r . Then there exists a sequence of weighted
triangulated polygonal disks (Ωn, Tn, ηn, (pn, qn, rn)) with inversive
distance circle packing metrics ln, where Tn is a triangulation of
Ωn, ηn : En → (1,+∞) is a weight defined on En = E (Tn) and
pn, qn, rn are three distinct boundary vertices of Tn, such that

(a) Ω = ∪∞n=1Ωn with Ωn ⊂ Ωn+1, and limn pn = p, limn qn = q,
limn rn = r .

(b) discrete conformal maps fn from 4ABC to (Ωn, Tn, ηn, ln)
with fn(A) = pn, fn(B) = qn, fn(C ) = rn exist.

(c) discrete conformal maps fn converge uniformly to the
Riemann mapping f .



Other discrete conformal maps and their convergence

(a) Circle Patterns,
Bücking , 2018.

(b) Tutte embedding,
Dym − Slutsky −
Lipman, 2019.

(c) Square tiling,
Georgakopoulos −
Panagiotis, 2020.

Other convergence scheme:
convergence of discrete conformal factors to the smooth factor on
general surfaces.

Thank you!
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