Model

Economic Insights

Conclusion

References

Contracting with a Present-Biased Agent: Sannikov meets Laibson

Alejandro Rivera¹

 1 UT-Dallas

BIRS May 2023

Motivation	Model	Economic Insights	Conclusion	References
●000	0000000	0000	0000000	

Outline

2 Model

Beconomic Insights

④ Conclusion

Motivation	Model	Economic Insights	Conclusion	References
0000	0000000	0000	0000000	

• Rich literature applying dynamic contracting methods to various fields of economics.

Motivation	Model	Economic Insights	Conclusion	References
0000	0000000	0000	0000000	

- Rich literature applying dynamic contracting methods to various fields of economics.
- Two major watersheds in the development of modern dynamic contracting:
 - Recursive formulation using continuation value of the agent as state variable (Spear and Srivastava, 1987).
 - Omega Martingale techniques in continuous-time formulation to characterize incentive compatibility as constraint on volatility of cont. value (Sannikov, 2008).
 - $\mathbf{3} \implies$ Standard stochastic control problem (very tractable).

Motivation	Model	Economic Insights	Conclusion	References
0000	0000000	0000	0000000	

- Rich literature applying dynamic contracting methods to various fields of economics.
- Two major watersheds in the development of modern dynamic contracting:
 - Recursive formulation using continuation value of the agent as state variable (Spear and Srivastava, 1987).
 - Martingale techniques in continuous-time formulation to characterize incentive compatibility as constraint on volatility of cont. value (Sannikov, 2008).
 - $\mathbf{3} \implies$ Standard stochastic control problem (very tractable).
- By and large, modeling done under neoclassical exponential discounting.

Motivation	Model	Economic Insights	Conclusion	Reference
0000	0000000	0000	0000000	

• Success of present-bias $(\beta - \hat{\beta} - \delta$ setting Laibson (1997)) in rationalizing economic behavior in a variety of contexts (e.g., savings behavior, responses to monetary shocks, gym memberships.)

- Success of present-bias $(\beta \hat{\beta} \delta$ setting Laibson (1997)) in rationalizing economic behavior in a variety of contexts (e.g., savings behavior, responses to monetary shocks, gym memberships.)
- Two-period contract theory settings highlight new constraint *perceived choice constraint* (PCC) when agent is naive.

- Success of present-bias $(\beta \hat{\beta} \delta$ setting Laibson (1997)) in rationalizing economic behavior in a variety of contexts (e.g., savings behavior, responses to monetary shocks, gym memberships.)
- Two-period contract theory settings highlight new constraint *perceived choice constraint* (PCC) when agent is naive.
- Methodological Insights:
 - Recursive formulation using *perceived* continuation value of the agent.

- Success of present-bias $(\beta \hat{\beta} \delta$ setting Laibson (1997)) in rationalizing economic behavior in a variety of contexts (e.g., savings behavior, responses to monetary shocks, gym memberships.)
- Two-period contract theory settings highlight new constraint *perceived choice constraint* (PCC) when agent is naive.
- Methodological Insights:
 - Recursive formulation using *perceived* continuation value of the agent.
 - IC-constraint links volatility of perceived continuation value with actual discount factor.

- Success of present-bias $(\beta \hat{\beta} \delta$ setting Laibson (1997)) in rationalizing economic behavior in a variety of contexts (e.g., savings behavior, responses to monetary shocks, gym memberships.)
- Two-period contract theory settings highlight new constraint *perceived choice constraint* (PCC) when agent is naive.
- Methodological Insights:
 - Recursive formulation using *perceived* continuation value of the agent.
 - IC-constraint links volatility of perceived continuation value with actual discount factor.
 - PCC-constraint links volatility of perceived continuation value with perceived discount factor.

ation		

Motiv

0000

Model 0000000 Economic Insights

Conclusion

References

Contribution to the Literature

Setting	Two-period model	Continuous-time model
	(IC)-constraint:	(IC)-constraint:
Evo dic	Reward agent with	Use sensitivity of agent's
Exp. uls-	higher consumption if	continuation value to out-
counting	"high" output is realized.	put to incentivize effort.
	Holmström (1979).	Sannikov (2008).
	(PCC)-constraint:	(PCC)-constraint:
	Rewards incentivize agent's	Use sensitivity of agent's
Brocont	perceived choice under	perceived continuation
hipsod	his (wrongly) anticipated	value to incentivize agent's
Diaseu	future present-bias $\hat{\beta}$.	perceived choice using
	Heidhues and Kőszegi	$\hat{\beta}$ as discount factor.
	(2010).	This paper.

Table: Contract theory with present-bias and in continuous-time.

Motivation	Model	Economic Insights	Conclusion	References
0000	•000000	0000	0000000	

Outline

Motivation

2 Model

Beconomic Insights

④ Conclusion

Motivation	Model o●ooooo	Economic Insights	Conclusion	References
Model				

- Continuous-time, infinite horizon setting.
- Risk-neutral, deep pocketed principal.
- Risk-neutral, limited liability, and present-biased agent.

Motivation	Model ⊙●○○○○○	Economic Insights	Conclusion	References
Model				

- Continuous-time, infinite horizon setting.
- Risk-neutral, deep pocketed principal.
- Risk-neutral, limited liability, and present-biased agent.
- Present-bias following IG Model of Harris and Laibson (2013).

Motivation	Model ○●○○○○○	Economic Insights	Conclusion	References
Model				

- Continuous-time, infinite horizon setting.
- Risk-neutral, deep pocketed principal.
- Risk-neutral, limited liability, and present-biased agent.
- Present-bias following IG Model of Harris and Laibson (2013).
- \bullet Principal needs to contract with agent to manage a project with cash flows $Y_t\colon$

$$dY_t = a_t \mu dt + \sigma dZ_t^a, \tag{1}$$

where agent's effort a_t is his private information.

Motivation	Model ○○●○○○○	Economic Insights	Conclusion	References
Agent's P	roblem			

• Principal offers contract $\Gamma = (C, \tau, a, \hat{a})$.

Agent's Problem

- Principal offers contract $\Gamma = (C, \tau, a, \hat{a})$.
- Agent's (perceived) continuation utility \hat{V} (under exponential discounting):

$$\hat{V}_{t} = E_{t}^{\hat{a}} \left[\int_{t}^{\tau} e^{-\gamma(s-t)} (dC_{s} - g(\hat{a}_{s})) ds \right].$$
 (2)

- Expected value is computed under the $\mathbb{P}^{\hat{\alpha}}.$
- Agent (incorrectly) anticipates his future selves to exert effort policy \hat{a} .

Motivation	Model 000●000	Economic Insights	Conclusion	References
Agent's P	roblem			

• Following Sannikov (2008) apply the MRT such that evolution of $\hat{V}:$

$$d\hat{V}_t = \gamma \hat{V}_t dt - (dC_t - g(\hat{a}_t)dt) + \varphi_t (dY_t - \hat{a}_t \mu dt).$$
 (3)

Motivation	Model	Economic Insights	Conclusion	References
Agent's P	roblem			

• Following Sannikov (2008) apply the MRT such that evolution of $\hat{V}:$

$$d\hat{V}_t = \gamma \hat{V}_t dt - (dC_t - g(\hat{a}_t)dt) + \varphi_t \left(dY_t - \hat{a}_t \mu dt \right). \eqno(3)$$

- First term captures appreciation due to long-term exponential discounting.
- Second term captures utility anticipated from consumption net of effort costs.
- Last term captures measure sensitivity to output realizations: $\varphi_t=d\hat{V}_t/dY_t \text{ is a measure of the contract's incentives.}$

- <u>Definition</u>: Contract $\Gamma = (C, \tau, a, \hat{a})$ is (IC) if optimal for agent's current self t to exert effort a_t when it anticipates his future selves to exert effort \hat{a}_s , for all s > t.
- Lemma 1: $\Gamma = (C, \tau, a, \hat{a})$ is (IC) iff:

$$g'(a_t) = \beta \phi_t \mu \iff a_t = \frac{\beta \mu \phi_t}{\theta}$$
 (IC)

for all t, where φ comes from the dynamics of \hat{V} given in equation (3).

Agent's Problem (PCC)

- <u>Definition</u>: $\Gamma = (C, \tau, a, \hat{a})$ satisfies (PCC) if the 0-self agent thinks *it will be optimal* for all his future selves to choose \hat{a}_t for all t > 0.
- Lemma 2: $\Gamma = (C, \tau, a, \hat{a})$ satisfies (PPC) iff:

$$g'(\hat{a}_t) = \hat{\beta} \varphi_t \mu \iff \hat{a}_t = \frac{\hat{\beta} \mu \varphi_t}{\theta} \qquad (\text{PCC})$$

Agent's Problem (PCC)

- <u>Definition</u>: $\Gamma = (C, \tau, a, \hat{a})$ satisfies (PCC) if the 0-self agent thinks *it will be optimal* for all his future selves to choose \hat{a}_t for all t > 0.
- Lemma 2: $\Gamma = (C, \tau, a, \hat{a})$ satisfies (PPC) iff:

$$g'(\hat{a}_t) = \hat{\beta} \varphi_t \mu \iff \hat{a}_t = \frac{\hat{\beta} \mu \varphi_t}{\theta} \qquad (\text{PCC})$$

• Equation (PCC) is new in the literature and captures (PCC) constraint in recursive settings!

Motivation	Model	Economic Insights	Conclusion	References
0000	000000	0000	0000000	

Principal's Problem

• Principal solves:

$$\max_{\Gamma} \mathbb{E}^{\alpha} \left[\int_{0}^{\tau} e^{-rt} \left(dY_{t} - dC_{t} \right) + e^{-r\tau} L \right]$$
(4)

subject to (IC), (PCC), and (PC).

Motivation	Model	Economic Insights	Conclusion	References
0000	000000	0000	0000000	

Principal's Problem

• Principal solves:

$$\max_{\Gamma} \mathbb{E}^{\alpha} \left[\int_{0}^{\tau} e^{-rt} \left(dY_{t} - dC_{t} \right) + e^{-r\tau} L \right]$$
(4)

subject to (IC), (PCC), and (PC).

 \bullet Constraints only require keeping track of \hat{V} , which follows:

$$d\hat{V}_{t} = \gamma \hat{V}_{t} dt - (dC_{t} - g(\hat{a}_{t})dt) + \underline{\phi_{t}\mu(a_{t} - \hat{a}_{t})dt} + \phi_{t}\sigma dZ_{t}^{a},$$
(5)
under \mathbb{P}^{a} used by the principal

Motivation	Model	Economic Insights	Conclusion	References
0000	000000	0000	0000000	

Principal's Problem

• Principal solves:

$$\max_{\Gamma} \mathbb{E}^{\alpha} \left[\int_{0}^{\tau} e^{-rt} \left(dY_{t} - dC_{t} \right) + e^{-r\tau} L \right]$$
(4)

subject to (IC), (PCC), and (PC).

 \bullet Constraints only require keeping track of $\hat{V},$ which follows:

$$d\hat{V}_{t} = \gamma \hat{V}_{t} dt - (dC_{t} - g(\hat{a}_{t})dt) + \underline{\phi_{t}\mu(a_{t} - \hat{a}_{t})dt} + \phi_{t}\sigma dZ_{t}^{a},$$
(5)

under \mathbb{P}^{a} used by the principal.

• Solve standard control problem formulating HJB for $F(\hat{V}).$

Motivation	Model	Economic Insights	Conclusion	References
0000	0000000	•••••	00000000	

Outline

Motivation

2 Model

8 Economic Insights

④ Conclusion

Motivation	Model	Economic Insights
0000	000000	0000

Conclusion

References

Signing Bonus and Payout Boundary

Figure: Comparative statics for the payout boundary and initial bonus.

Motivation	Model	Economic Insights	Conclusion
0000	0000000	0000	000000

References

Value Function, Incentives, and Effort

Exploitation Effect

Figure: Continuation value versus perceived continuation value.

Motivation	Model	Economic Insights	Conclusion	References
0000	000000	0000	•0000000	

Outline

Motivation

2 Model

8 Economic Insights

4 Conclusion

Motivation	Model	Economic Insights	Conclusion	References
0000	0000000	0000	0000000	

Conclusion

- Recursive methodology to contract with present-biased agents:
 - **()** Use perceived cont. value of agent as state variable.
 - 2 Link volatility of cont. value and actual discount factor to capture IC (as in Sannikov (2008)).
 - Link volatility of cont. value and perceived discount factor to capture PCC.

Motivation	Model	Economic Insights	Conclusion	References
0000	0000000	0000	0000000	

Conclusion

- Recursive methodology to contract with present-biased agents:
 - **()** Use perceived cont. value of agent as state variable.
 - 2 Link volatility of cont. value and actual discount factor to capture IC (as in Sannikov (2008)).
 - Link volatility of cont. value and perceived discount factor to capture PCC.
- Present-bias gives rise to:
 - Signing bonus.
 - 2 Naivete leads to more back-loaded contracts.
 - Solution 10 Naivete leads to higher powered incentives.
 - Agent is "exploited" with rewards for unrealistically high performance that are unlikely to materialize.

Model

Economic Insights

Conclusion

References

THANK YOU!!!

Contracting with a Present-Biased Agent: Sannikov meets Laibson (BIRS 2023)

Agent's Problem (PC)

• Agent's participation constraint (PC) states that the perceived payoff from the contract at t = 0 must be larger than an exogenous initial outside option denoted $\underline{\hat{V}}$:

$$\beta \mathsf{E}^{\hat{a}} \left[\int_{0_{+}}^{\tau} e^{-\gamma s} (dC_{s} - g(\hat{a}_{s})) ds \right] + dC_{0} = \beta \hat{V}_{0_{+}} + dC_{0} \ge \underline{\hat{V}}.$$
(PC)

Agent's Problem (PC)

• Agent's participation constraint (PC) states that the perceived payoff from the contract at t = 0 must be larger than an exogenous initial outside option denoted $\underline{\hat{V}}$:

$$\beta \mathsf{E}^{\hat{a}} \left[\int_{0_{+}}^{\tau} e^{-\gamma s} (dC_{s} - g(\hat{a}_{s})) ds \right] + dC_{0} = \beta \hat{V}_{0_{+}} + dC_{0} \ge \underline{\hat{V}}.$$
(PC)

• Characterizing IC via equation (IC), PCC via equation (PCC), and PC via equation (PC) allow us to write the principal's problem recursively with the agent's perceived continuation value \hat{V} as a state variable.

Model
00000

Economic Insights

References

Recursive Formulation t > 0:

• Denote principal value as $F(\hat{V})$.

Motivation	Model	Economic Insights	Conclusion	References
0000	0000000	0000	0000000	

Recursive Formulation t > 0:

- Denote principal value as $F(\hat{V})$.
- Conjecture $dC_t = 0$ whenever $\hat{V_t} \in [0, \bar{V})$ and reflect $\hat{V_t}$ down by $dC_t > 0$ whenever $\hat{V_t} = \bar{V}$.

Motivation	Model	Economic Insights	Conclusion	References
0000	0000000	0000	0000000	

Recursive Formulation t > 0:

- Denote principal value as $F(\hat{V})$.
- Conjecture $dC_t = 0$ whenever $\hat{V_t} \in [0, \bar{V})$ and reflect $\hat{V_t}$ down by $dC_t > 0$ whenever $\hat{V_t} = \bar{V}$.
- $F(\hat{V})$ satisfies for $\hat{V} \in [0,\bar{V}] {:}$

$$rF(\hat{V}) = \max_{\Phi} \{a\mu + F'(\hat{V})(\gamma \hat{V} + g(\hat{a}) + \phi \mu(a - \hat{a}))$$
(6)

$$+\frac{1}{2}F''(V)\phi^2\sigma^2\}$$
(7)

$$F(0) = L, \qquad F'(\bar{V}) = -1, \qquad F''(\bar{V}) = 0, \tag{8}$$

where
$$a = \frac{\beta \mu \phi}{\theta}$$
 (IC) and $\hat{a} = \frac{\hat{\beta} \mu \phi}{\theta}$ (PCC).

Value function at t = 0:

- Recall disproportional valuation of current self utility.
- Need to solve optimal initial payment dC_0 .
- Formally given by

$$\max_{d C_0} F(\hat{V}_{0^+}) - dC_0, \tag{9}$$

subject to the participation constraint (PC).

Value function at t = 0:

- Recall disproportional valuation of current self utility.
- Need to solve optimal initial payment dC₀.
- Formally given by

$$\max_{dC_0} F(\hat{V}_{0^+}) - dC_0, \tag{9}$$

subject to the participation constraint (PC).

• Substituting (PC) yields

$$dC_{0} = \begin{cases} 0, & \text{if } 0 \leq \underline{\hat{V}} < \tilde{V}, \\ \underline{\hat{V}} - \tilde{V}, & \text{if } \underline{\hat{V}} \geqslant \tilde{V}, \end{cases}$$
(10)

where
$$\tilde{V}$$
 solves $F'(\tilde{V}) = -\beta$.

Motivation	Model	Economic Insights	Conclusion	Refere
0000	0000000	0000	00000000	

Value Function, Incentives, and Effort

Figure: Comparative statics with respect to β .

lotivation	Model	Economic Insights	Conclusion	Referenc
000	0000000	0000	0000000	

Value Function, Incentives, and Effort

Figure: Comparative statics with respect to β and $\hat{\beta}$ simultaneously.

otivation	Model	Economic Insights	Conclusion	References
000	000000	0000	0000000	
000	0000000	0000	0000000	

- Harris, Christopher and David Laibson, "Instantaneous Gratification," *The Quarterly Journal of Economics*, 2013, *128* (1), 205–248.
- Heidhues, Paul and Botond Kőszegi, "Exploiting naivete about self-control in the credit market," *American Economic Review*, 2010, *100* (5), 2279–2303.
- Holmström, Bengt, "Moral hazard and observability," *The Bell journal of economics*, 1979, pp. 74–91.
- Laibson, David, "Golden eggs and hyperbolic discounting," *The Quarterly Journal of Economics*, 1997, *112* (2), 443–478.
- Sannikov, Yuliy, "A Continuous- Time Version of the Principal: Agent Problem," *The Review of Economic Studies*, 2008, 75 (3), 957–984.
- **Spear, Stephen E and Sanjay Srivastava**, "On repeated moral hazard with discounting," *The Review of Economic Studies*, 1987, *54* (4), 599–617.

M