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Introduction

What is Generative modeling (for time series)?

• Given the distribution µ of the time series of some process for which we have access
only through data samples

Sequential audio/video data

Medical (Intensive Care Unit data) of a patient

Renewable (wind and solar) energy production

Finance and insurance: asset price, volatility surface, claim process, ...

I The goal is to design algorithms for

learning µ

generating real-looking samples of this data distribution:

Useful for improving clinical predictions, weather forecast
Fnancial industry: market stress test, market risk measurement, deep hedging,
reinforcement learning for optimal trading
Data-driven approach for risk management
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Introduction

Generative AI

• Generative modeling (GM) has become a classical task in machine learning with several
competing methods:

Likelihood-based models: energy-based models (EBM), variational auto-encoders
(VAE)

Implicit generative models: generative adversarial network (GAN)

Score-based diffusion models: last generation of generative AI models that
outperforms GANs in terms of visual quality.

used notably in image processing with spectacular success (and controversies!), but
mostly for static data/image (DALL-E, Midjourney, Stable diffusion, etc).
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Introduction

Challenges of GM for time series

• Temporal setting (sequential data) poses new challenges to GM:

capture the potentially complex dynamics of variables across time

not enough to learn the time marginals

learn the joint distribution without exploiting the sequential structure is also
not sufficient
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Introduction

State-of-the-art generative methods for time series

• Time series GAN (Yoon et al. 19): combination of an unsupervised adversarial loss
on real/synthetic data and supervised loss for generating sequential data

• Quant GAN (Wiese et al. 20): adversarial generator using temporal convolutional
networks

• Causal optimal transport GAN (Xu et al. 20): adversarial generator using the
adapted Wasserstein distance for processes

• Conditional loss Euler generator (Remlinger et al. 21): SDE representation of time
series and minimizing the conditional distance between transition probabilities of
real/synthetic samples

• Signature embedding of time series: Fermanian (19), Ni et al. (20), Buehler et al.
(20).

I We propose here a generative model based on Schrödinger bridge, in the spirit of
score-based diffusion model, and adapted for time series.
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Schrödinger bridge for time series

Outline

1 Schrödinger bridge for time series

2 Numerical experiments with applications
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Schrödinger bridge for time series

Entropic interpolation of a time series distribution

Let µ ∈ P((Rd)N) be the data time series distribution of some Rd -valued process
observed on a time grid T = {ti : i = 1, . . . ,N}. We set t0 = 0 < t1 < . . . < tN = T .

• Schrödinger bridge time series problem: Find a diffusion process X on Rd satisfying

dXt = αtdt + dWt , 0 ≤ t ≤ T , X0 = 0,

with a controlled drift α minimizing

E
[1

2

∫ T

0

|αt |2dt
]

and such that (Xt1 , . . . ,XtN ) ∼ µ (perfect match of the data distribution).
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Schrödinger bridge for time series

Assumptions

Assume that µ admits a density w.r.t. Lebesgue measure on (Rd)N , denoted by misuse
of notation: µ(x1, . . . , xN).

Denote by µW
T the distribution of Brownian motion W on T , i.e. of (Wt1 , . . . ,WtN ),

hence with density:

µWT (x1, . . . , xN) =

N−1∏
i=0

1√
2π(ti+1 − ti )

exp
(
−
|xi+1 − xi |2

2(ti+1 − ti )

)
.

• We assume that the relative entropy of µ w.r.t. µW
T is finite, i.e.

(H) H(µ|µW
T ) :=

∫
log

µ

µW
T
dµ < ∞.

Remark: Assumption (H) is satisfied whenever µ comes from a process with

Gaussian noise

Heavy-tailed distribution but with second moment



9/21

Schrödinger bridge for time series

Solution to Schrödinger bridge time series (SBTS)

Theorem (Diffusion SBTS)

Under (H), the optimal controlled drift of the SBTS problem is in the path-
dependent form:

α∗t = a∗(t,Xt ; X ti ), ti ≤ t < ti+1, i = 0, . . . ,N − 1,

where we set X ti := (Xt1 , . . . ,Xti ), and

a∗(t, x ; x i ) = ∇x logEW

[ µ
µW
T

(Xt1 , . . . ,XtN )
∣∣X ti = x i ,Xt = x

]
,

for x i = (x1, . . . , xi ) ∈ (Rd)i , x ∈ Rd . Here EW denotes the expectation under
which X is a Brownian motion by Girsanov’s theorem.

Application: We have then a generative model for the time series with the diffusion

dXt = a∗(t,Xt ; (Xti )ti≤t)dt + dWt , X0 = 0,

by simulating e.g. from an Euler scheme → (Xt1 , . . . ,XtN ) ∼ µ.
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Schrödinger bridge for time series Estimation of drift function

Schrödinger drift function

Using Bayes formula, we derive the following expression:

a∗(t, x ; x i ) =
1

ti+1 − t

Eµ

[
(Xti+1 − x)Fi (t, xi , x ,Xti+1 )

∣∣X ti = x i

]
Eµ

[
Fi (t, xi , x ,Xti+1 )

∣∣X ti = x i

] , (1)

for t ∈ [ti , ti+1), i = 0, . . . ,N − 1, x i ∈ (Rd)i , x ∈ Rd , where

Fi (t, xi , x , xi+1) = exp

(
− (xi+1 − x)2

2(ti+1 − t)
+

(xi+1 − xi )
2

2(ti+1 − ti )

)
.

Here Eµ[·|·] is the (conditional) expectation under µ → One can then estimate the drift
function by relying directly on samples of data distribution µ.

Remark: When µ is the distribution arising from a Markov chain, then the conditional
expectations in (1) (and so the drift function) will depend on the past values X ti =
(Xt1 , . . . ,Xti ) only via the last value Xti .
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Schrödinger bridge for time series Estimation of drift function

Kernel estimation of the drift

• Approximate the conditional expectation under µ by kernel regression methods:

I From data samples X (m) = (X
(m)
t1
, . . . ,X

(m)
tN

), m = 1, . . . ,M from µ, the
Nadaraya-Watson estimator of the drift function in (1) is given by

â(t, x ; x i ) =
1

ti+1 − t

M∑
m=1

(X
(m)
ti+1
− x)Fi (t,X

(m)
ti
, x ,X

(m)
ti+1

)
i∏

j=1

Kh(xj − X
(m)
tj

)

M∑
m=1

Fi (t,X
(m)
ti
, x ,X

(m)
ti+1

)
i∏

j=1

Kh(xj − X
(m)
tj

)

,

for x i = (x1, . . . , xi ), where Kh is a kernel function on Rd with bandwith h > 0. For
lower time complexity reason, we choose the quartic kernel Kh(x) = 1

h
K( x

h
) with

K(x) = (1− |x |2)1|x|≤1.
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Numerical experiments

Outline

1 Schrödinger bridge for time series

2 Numerical experiments with applications
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Numerical experiments Toy examples

Fractional Brownian motion

Fractional Brownian motion (FBM) with Hurst index H = 0.2.

• Parameters: M = 1000, N = 60, Nπ = 100 (number of time steps in Euler scheme),
bandwith h = 0.05, Runtime for 1000 generated paths = 100s.
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Figure: Four samples path of reference FBM (left) and generator SBTS (right)
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Numerical experiments Toy examples

Metrics for SBST generator vs FBM
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Bottom: Covariance matrix for reference FBM and SBTS
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Numerical experiments Toy examples

Estimation of Hurst index

Standard estimator of Hurst index:

Ĥ =
1

2

[
1−

log
( N−1∑

i=0

|Xti+1 − Xti |2
)

logN

]
.

I From our generated SBTS with N = 60, we get:

Ĥ = 0.2016, Std = 0.004.



16/21

Numerical experiments Application with real-data sets

Real-world data sets on Apple

Data: stock prices of Apple from jan. 1, 2010 to jan. 30, 2020, with sliding window of
N = 60 days.
M = 2500, Nπ = 100, bandwith h = 0.05, runtime for 500 generated paths = 100s.

0 10 20 30 40 50 60
time

0.8

0.9

1.0

1.1

1.2

1.3

1.4

A
AP

L

0 10 20 30 40 50 60
time

0.8

0.9

1.0

1.1

1.2

1.3

1.4

SB
TS

Figure: Four paths generated by SBTS (right) vs real ones from Apple (left).
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Numerical experiments Application with real-data sets

Metrics for SBST generator vs real-data Apple
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Figure: Top: Covariance matrix for real-data and generative SBTS. Bottom: Quadratic variation distribution.
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Numerical experiments Application with real-data sets

Application to deep hedging

• Consider a ATM call option on Apple: g(ST ) = (ST − K)+, and we search for a price
p∗ and hedging strategy ∆∗ minimizing the quadratic criterion (loss function):

(p,∆) 7→ E
∣∣∣ p +

N−1∑
i=0

∆ti (Sti+1 − Sti )− g(ST )︸ ︷︷ ︸
PnL

∣∣∣2 = replication error

I We parametrize ∆ by a LSTM network that is trained from synthetic data sets
produced by SBTS, and we compare the results with real-data sets.

Figure: Procedure of backtest for deep hedging
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Numerical experiments Application with real-data sets

Comparison of the PnL and replication error with real-data and generative SBTS
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Figure: Deep hedging PnL distribution from test set

Training Set Test Set
Price Mean Std Mean Std

Data 0.0415 0.0008 0.0098 0.003 0.012
SBTS 0.0471 0.0004 0.0109 -0.0024 0.0076

Table: Mean of PnL and its Std (replication error).
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Conclusion

Concluding remarks

• Novel generative model for time series based on Schrödinger bridge (SB) approach:

Solution described by a forward stochastic differential equation (SDE) over a finite
period, which matchs perfectly the data distribution

Path-dependent drift capturing the temporal dynamics of the time series distribution

Drift estimated by kernel regression (possibly by vectorization): practical and
low-cost computationally

• Compared to GAN type methods, the simulation of synthetic samples from SB is much
faster as it does not require training of neural networks.

• Series of numerical experiments, including financial applications with real-data, to
illustrate the performance and accuracy of our generative SBTS. Further tests to be
developed ...

• Limitations and further developments:

Solution obtained under the finiteness of the relative entropy of the time series
distribution: may be violated for heavy-tailed distribution (no second-order moment)

Numerical instability in very high dimension (e.g. pixels in image)
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Conclusion

Reference

q M. Hamdouche, P. Henry-Labordère, H. Pham. Generative modeling for time
series via Schrödinger bridge. SSRN 4412434, arXiv:2304.05093

Thank you for your attention
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