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Combinatorial Game Theory

Combinatorial Game: 2-player, perfect information, no chance

® Two players are called Left (female, positive, bLue) and Right
(male, negative, Red)

Examples
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® NiM was solved in 1902 by Bouton

Sprague-Grundy theory in 1930s

Berlekamp, Conway, and Guy discovered the algebraic
structure of combinatorial games in the 1970s

® This started modern combinatorial game theory

Connections to:
® Combinatorics (graph theory, design theory, etc.)
Number theory
Set theory
Algebra
Computational complexity
Artificial intelligence and machine learning
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Strong Placement Games

® Strong Placement Game (SP-Game):
® Players place pieces on empty spaces of the board according to
the rules.
® Pieces are not moved or removed once placed.
® Every sequence of moves leading to a legal position consists of
only legal moves.
® Examples: SNORT, NOGO, ARC KAYLES, NIM, HEX
® |ndependence game: Minimal forbidden formations are all
pairs
[ )

Distance game: Placement of pieces restricted by sets of
forbidden distances
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e Write {Left options | Right options}

® Winning conditions:
® Normal Play: Lose if unable to move
® Misere Play: Win if unable to move
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Combinatorial Game Theory - Disjunctive Sum

Given two combinatorial games G, H, their disjunctive sum G + H
is the game in which the player on their turn chooses either G or
H and makes a legal move in that game.

e Can get non-alternating play in one component
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Outcome Classes and Addition

Main Question 1: Which player wins the game?
® Qutcome classes:
® ¥ First player wins
Z: Second player wins
£ Left wins, no matter who goes first
Z: Right wins, no matter who goes first

® Finding the outcome class of a large game is difficult

® Analyze components separately and combine results
® [ssue: sums don't give unique answer

H+_ H*
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Game Values

Main Question 2: How much of an advantage does the winning
player have?
® For this we use game values
® G = H: Can switch in disjunctive sum without changing who
wins
® Value of a game: its equivalence class
® Some game values:

> Integers

> Dyadic rationals
> «={0]0}

> +1={1|-1}
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Game Values

Research Problem 1.1

Determine all possible values of a fixed SP-game.

® Very little is known for which game values are possible for
placement games

® CoL only has numbers or numbers plus x

® Lexi Nash generalized and showed that many CoL-like games
also only have those values

e DOMINEERING has received a lot of attention, but still
unknown
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Game Values

e A universal (class of) games takes on all possible game values

Research Problem 1.2

Are SP-games universal?

® Yes: Every combinatorial game is equal to an SP-game

® No: Might be able to simplify game value calculations for
SP-games
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Game Values

Research Problem 1.3

What are the values of SP-games under misere play?

® SP-games likely to be good restricted universe

® Recent advances for DOMINEERING by Dwyer, Milley, and
Willette
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Temperature

Main Question 3: How urgent is it to move in a certain
component?
® For this we use temperature
® Temperature: urgency of making a move
® Boiling point: maximum temperature for a set of games
® But calculating temperature is difficult
® Try to find approximations and bounds to simplify this

Theorem (-, Nowakowski, Santos, 2021)

Let S be a class of short games and J, K be two non-negative
numbers. If for all G € S, we have ((G) < K and for all G and
G® that £(GF),0(GT) < J, then

BP(S) <

K
5+J.
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Research Problem 2.1

What is the boiling point of distance games?

® For CoLitis O
® For SNORT it is infinite in general

® Appears that for specific board it is bounded by polynomial in
degree and 2-degree

Placement Games: Temperature 13/21



Temperature

Research Problem 2.2

Is the boiling point of DOMINEERING 27

Placement Games: Temperature 14/21



Temperature

Research Problem 2.2

Is the boiling point of DOMINEERING 27

® Conjectured by Berlekamp in 1970s

Placement Games: Temperature 14/21



Temperature

Research Problem 2.2

Is the boiling point of DOMINEERING 27

® Conjectured by Berlekamp in 1970s

¢ Study positions with temperature (close to) 2

Placement Games: Temperature 14/21



Temperature

Research Problem 2.2

Is the boiling point of DOMINEERING 27

® Conjectured by Berlekamp in 1970s
¢ Study positions with temperature (close to) 2

® Snakes are interesting

Placement Games: Temperature 14/21



Temperature

Research Problem 2.2

Is the boiling point of DOMINEERING 27

® Conjectured by Berlekamp in 1970s

Study positions with temperature (close to) 2

Snakes are interesting
® Grid structure of the board at core of this?

Placement Games: Temperature 14/21



Temperature

Research Problem 2.2

Is the boiling point of DOMINEERING 27

® Conjectured by Berlekamp in 1970s

Study positions with temperature (close to) 2

Snakes are interesting
® Grid structure of the board at core of this?

® Working with McKay and Tennenhouse on PARTIZAN
ARCKAYLES

Placement Games: Temperature 14/21



Temperature

Research Problem 2.2

Is the boiling point of DOMINEERING 27

® Conjectured by Berlekamp in 1970s

Study positions with temperature (close to) 2

Snakes are interesting
® Grid structure of the board at core of this?

® Working with McKay and Tennenhouse on PARTIZAN

ARCKAYLES
® Using a genetic algorithm, we found a position with
temperature 5/2
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Enumeration of Positions

e Go: Farr (2003), Tromp and Farneback (2007), Farr and
Schmidt (2008)

® Second player win: Hetyei (2009), Nowakowski et al. (2013)
¢ On paths: Brown et al. (2019)
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Enumeration

Main Question 4: How complex is a complete analysis of a game?
® To estimate this, we enumerate all possible positions
® Polynomial profile

® Bivariate: Pg(z,y) =, ; fijz'y’
® Can be used to find the number of positions both in purely
alternating play and in non-alternating play
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Enumeration of Positions

Research Problem 3.1

Determine the bipartite independence polynomial of graph
products.

® |ndependence games: can construct “auxiliary board” whose
independence polynomial is the polynomial profile

® For games such as COL or SNORT the auxiliary board is a
graph product

® Brown et al. (2019) determined generating function for
polynomial profile of COL and SNORT on paths

® Generalized with Lexi Nash to other distance games and other
boards
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Enumeration of Positions

Problem 3.2

Enumerate bipartite matchings.
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Enumeration of Positions

Problem 3.2

Enumerate bipartite matchings.

Theorem (-, McKay, 2021)

The polynomial profile of DOMINEERING on an m X n board is
the (1,1) entry of G, where
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Play Positions

n H Number of play positions H Ratio of play positions
1 1 1
2 5 0.71428
3 75 0.57251
4 4,632 0.46264
5 1,076,492 0.38299
6 963,182,263 0.32222
7 3,317,770,165,381 0.27774
8 43,809,083,383,524,391 0.24367
9 2,209,112,327,971,366,587,064 0.21689
10 || 424,273,291,301,040,427,702,718,109 0.19532
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Snort and Col on Complete Bipartite

m/n 0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 1 3 9 27 81 243 729 | 2187 | 6561 | 19683 | 59049 | 177147 | 531441 | 1594323
1 3 7 17 43 113 307 857 | 2443 | 7073 | 20707 | 61097 | 181243 | 539633

2 9 17 35 77 179 437 | 1115 | 2957 | 8099 | 22757 | 65195 | 189437

3 27 43 v 151 317 703 | 1637 | 3991 | 10157 | 26863 | 73397

4 81 113 179 317 611 1253 | 2699 | 6077 | 14291

5 243 307 437 703 1253 | 2407 | 4877 | 10303

6 729 857 1115 1637 | 2699 | 4877 | 9395

7 2187 2443 2957 3991 | 6077 | 10303

8 6561 7073 8099 | 10157 | 14291

9 19683 20707 | 22757 | 26863

10 59049 61097 | 65195 | 73397

11 177147 | 181243 | 189437

12 531441 | 539633

13 | 1594323

Conjecture (-, Nash, 2022)

The number of positions when playing COL or SNORT on the
complete bipartite graph K, , are recursively given by

PCOL,Km,n(l) = 5PCOL,Km’n_1(1) - 6PCOL,Km,n_2(1) + Cm

with ¢, given by the OEIS sequence A260217 (first few terms are
ey =4, cg =24, ¢y = 100, c5 = 360, and cg = 1204).
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https://oeis.org/A260217

Other Research Projects

® Games played on designs (with Melissa Huggan and Brett
Stevens)
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Other Research Projects

® Games played on designs (with Melissa Huggan and Brett
Stevens)

e Computational complexity of sums and thermographs (with
Kyle Burke, Matt Ferland, and Shanghua Teng)
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