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Combinatorial Game Theory

Combinatorial Game: 2-player, perfect information, no chance

• Two players are called Left (female, positive, bLue) and Right
(male, negative, Red)

Examples
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Combinatorial Game Theory

• Nim was solved in 1902 by Bouton

• Sprague-Grundy theory in 1930s
• Berlekamp, Conway, and Guy discovered the algebraic

structure of combinatorial games in the 1970s

• This started modern combinatorial game theory

• Connections to:

• Combinatorics (graph theory, design theory, etc.)
• Number theory
• Set theory
• Algebra
• Computational complexity
• Artificial intelligence and machine learning
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Placement Games

• Domineering: Played on a grid, players place dominoes,
Left vertically and Right horizontally

• Col: Played on any finite graph, players claim (colour)
vertices, no two vertices of the same player may be adjacent
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Strong Placement Games

• Strong Placement Game (SP-Game):

• Players place pieces on empty spaces of the board according to
the rules.

• Pieces are not moved or removed once placed.
• Every sequence of moves leading to a legal position consists of

only legal moves.

• Examples: Snort, NoGo, Arc Kayles,

Nim, Hex

• Independence game: Minimal forbidden formations are all
pairs

• Distance game: Placement of pieces restricted by sets of
forbidden distances
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Combinatorial Game Theory

• Write {Left options | Right options}

• Winning conditions:

• Normal Play: Lose if unable to move
• Misère Play: Win if unable to move
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Combinatorial Game Theory - Disjunctive Sum

=

+ +

+

Definition

Given two combinatorial games G,H, their disjunctive sum G+H
is the game in which the player on their turn chooses either G or
H and makes a legal move in that game.

• Can get non-alternating play in one component
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Outcome Classes and Addition

Main Question 1: Which player wins the game?

• Outcome classes:

• N : First player wins
• P: Second player wins
• L : Left wins, no matter who goes first
• R: Right wins, no matter who goes first

• Finding the outcome class of a large game is difficult

• Analyze components separately and combine results
• Issue: sums don’t give unique answer

+
vs.

+
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Game Values

Main Question 2: How much of an advantage does the winning
player have?
• For this we use game values

• G = H: Can switch in disjunctive sum without changing who
wins

• Value of a game: its equivalence class
• Some game values:

I Integers
I Dyadic rationals
I ∗ = {0 | 0}
I ±1 = {1 | −1}
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Game Values

Research Problem 1.1

Determine all possible values of a fixed SP-game.

• Very little is known for which game values are possible for
placement games

• Col only has numbers or numbers plus ∗
• Lexi Nash generalized and showed that many Col-like games

also only have those values

• Domineering has received a lot of attention, but still
unknown

Placement Games: Game Values 9/21
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Game Values

• A universal (class of) games takes on all possible game values

Research Problem 1.2

Are SP-games universal?

• Yes: Every combinatorial game is equal to an SP-game

• No: Might be able to simplify game value calculations for
SP-games
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Game Values

Research Problem 1.3

What are the values of SP-games under misère play?

• SP-games likely to be good restricted universe

• Recent advances for Domineering by Dwyer, Milley, and
Willette
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Temperature

Main Question 3: How urgent is it to move in a certain
component?
• For this we use temperature

• Temperature: urgency of making a move
• Boiling point: maximum temperature for a set of games
• But calculating temperature is difficult
• Try to find approximations and bounds to simplify this

Theorem (–, Nowakowski, Santos, 2021)

Let S be a class of short games and J,K be two non-negative
numbers. If for all G ∈ S, we have `(G) ≤ K and for all GL and
GR that `(GL), `(GR) ≤ J , then

BP (S) ≤ K

2
+ J.
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Temperature

Main Question 3: How urgent is it to move in a certain
component?
• For this we use temperature

• Temperature: urgency of making a move

• Boiling point: maximum temperature for a set of games
• But calculating temperature is difficult
• Try to find approximations and bounds to simplify this

Theorem (–, Nowakowski, Santos, 2021)

Let S be a class of short games and J,K be two non-negative
numbers. If for all G ∈ S, we have `(G) ≤ K and for all GL and
GR that `(GL), `(GR) ≤ J , then

BP (S) ≤ K

2
+ J.

Placement Games: Temperature 12/21



Temperature

Main Question 3: How urgent is it to move in a certain
component?
• For this we use temperature

• Temperature: urgency of making a move
• Boiling point: maximum temperature for a set of games

• But calculating temperature is difficult
• Try to find approximations and bounds to simplify this

Theorem (–, Nowakowski, Santos, 2021)

Let S be a class of short games and J,K be two non-negative
numbers. If for all G ∈ S, we have `(G) ≤ K and for all GL and
GR that `(GL), `(GR) ≤ J , then

BP (S) ≤ K

2
+ J.

Placement Games: Temperature 12/21



Temperature

Main Question 3: How urgent is it to move in a certain
component?
• For this we use temperature

• Temperature: urgency of making a move
• Boiling point: maximum temperature for a set of games
• But calculating temperature is difficult

• Try to find approximations and bounds to simplify this

Theorem (–, Nowakowski, Santos, 2021)

Let S be a class of short games and J,K be two non-negative
numbers. If for all G ∈ S, we have `(G) ≤ K and for all GL and
GR that `(GL), `(GR) ≤ J , then

BP (S) ≤ K

2
+ J.

Placement Games: Temperature 12/21



Temperature

Main Question 3: How urgent is it to move in a certain
component?
• For this we use temperature

• Temperature: urgency of making a move
• Boiling point: maximum temperature for a set of games
• But calculating temperature is difficult
• Try to find approximations and bounds to simplify this

Theorem (–, Nowakowski, Santos, 2021)

Let S be a class of short games and J,K be two non-negative
numbers. If for all G ∈ S, we have `(G) ≤ K and for all GL and
GR that `(GL), `(GR) ≤ J , then

BP (S) ≤ K

2
+ J.

Placement Games: Temperature 12/21



Temperature

Main Question 3: How urgent is it to move in a certain
component?
• For this we use temperature

• Temperature: urgency of making a move
• Boiling point: maximum temperature for a set of games
• But calculating temperature is difficult
• Try to find approximations and bounds to simplify this

Theorem (–, Nowakowski, Santos, 2021)

Let S be a class of short games and J,K be two non-negative
numbers. If for all G ∈ S, we have `(G) ≤ K and for all GL and
GR that `(GL), `(GR) ≤ J , then

BP (S) ≤ K

2
+ J.

Placement Games: Temperature 12/21



Temperature

Research Problem 2.1

What is the boiling point of distance games?

• For Col it is 0
• For Snort it is infinite in general

• Appears that for specific board it is bounded by polynomial in
degree and 2-degree
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Temperature

Research Problem 2.2

Is the boiling point of Domineering 2?

• Conjectured by Berlekamp in 1970s

• Study positions with temperature (close to) 2

• Snakes are interesting
• Grid structure of the board at core of this?

• Working with McKay and Tennenhouse on Partizan
ArcKayles

• Using a genetic algorithm, we found a position with
temperature 5/2
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Enumeration of Positions

• Go: Farr (2003), Tromp and Farnebäck (2007), Farr and
Schmidt (2008)

• Second player win: Hetyei (2009), Nowakowski et al. (2013)

• On paths: Brown et al. (2019)
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Enumeration

Main Question 4: How complex is a complete analysis of a game?

• To estimate this, we enumerate all possible positions

• Polynomial profile

• Bivariate: PG(x, y) =
∑

i,j fi,jx
iyj

• Can be used to find the number of positions both in purely
alternating play and in non-alternating play
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Enumeration of Positions

Research Problem 3.1

Determine the bipartite independence polynomial of graph
products.

• Independence games: can construct “auxiliary board” whose
independence polynomial is the polynomial profile

• For games such as Col or Snort the auxiliary board is a
graph product
• Brown et al. (2019) determined generating function for

polynomial profile of Col and Snort on paths

• Generalized with Lexi Nash to other distance games and other
boards
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Enumeration of Positions

Problem 3.2

Enumerate bipartite matchings.

Theorem (–, McKay, 2021)

The polynomial profile of Domineering on an m× n board is
the (1,1) entry of Gm

0,n where

G0,q+1 =


G0,q

+yG1,q
xG0,q

G0,q 0

 G1,q+1 =


G0,q 0

0 0


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Play Positions

n Number of play positions Ratio of play positions

1 1 1

2 5 0.71428

3 75 0.57251

4 4,632 0.46264

5 1,076,492 0.38299

6 963,182,263 0.32222

7 3,317,770,165,381 0.27774

8 43,809,083,383,524,391 0.24367

9 2,209,112,327,971,366,587,064 0.21689

10 424,273,291,301,040,427,702,718,109 0.19532
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Snort and Col on Complete Bipartite
m/n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 3 9 27 81 243 729 2187 6561 19683 59049 177147 531441 1594323

1 3 7 17 43 113 307 857 2443 7073 20707 61097 181243 539633

2 9 17 35 77 179 437 1115 2957 8099 22757 65195 189437

3 27 43 77 151 317 703 1637 3991 10157 26863 73397

4 81 113 179 317 611 1253 2699 6077 14291

5 243 307 437 703 1253 2407 4877 10303

6 729 857 1115 1637 2699 4877 9395

7 2187 2443 2957 3991 6077 10303

8 6561 7073 8099 10157 14291

9 19683 20707 22757 26863

10 59049 61097 65195 73397

11 177147 181243 189437

12 531441 539633

13 1594323

Conjecture (–, Nash, 2022)

The number of positions when playing Col or Snort on the
complete bipartite graph Km,n are recursively given by

PCol,Km,n(1) = 5PCol,Km,n−1(1)− 6PCol,Km,n−2(1) + cm

with cm given by the OEIS sequence A260217 (first few terms are
c2 = 4, c3 = 24, c4 = 100, c5 = 360, and c6 = 1204).

Placement Games: Enumeration 20/21

https://oeis.org/A260217


Other Research Projects

• Games played on designs (with Melissa Huggan and Brett
Stevens)

• Computational complexity of sums and thermographs (with
Kyle Burke, Matt Ferland, and Shanghua Teng)
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Thank you!



References

• J.I. Brown, D. Cox, A. Hoefel, N. McKay, R. Milley, R.J. Nowakowski,
A.A. Siegel. A Note on Polynomial Profiles of Placement Games. Games
of No Chance 5, volume 70 of MSRI Publications, pages 21–33,
Cambridge University Press, 2019.

• A. Dwyer, R. Milley, M. Willette. Domineering under misère play. To
appear in Integers.

• S. Faridi, S. Huntemann, R.J. Nowakowski. Games and Complexes I:
Transformation via Ideals. Games of No Chance 5, volume 70 of MSRI
Publications, pages 293–304, Cambridge University Press, 2019.

• S. Faridi, S. Huntemann, R.J. Nowakowski. Simplicial Complexes are
Game Complexes. Electron. J. Combin., 26(3):P3.34, 2019.

• S. Huntemann, N.A. McKay. Counting Domineering Positions. Journal of
Integer Sequences 24:21.4.8, 2021.

• S. Huntemann, L.A. Nash. The Polynomial Profile of Distance Games on
Paths and Cycles. Integers 22:#G4, 2022.

• S. Huntemann, R.J. Nowakowski, C. Santos. Bounding game temperature
using confusion intervals. Theoret. Comput. Sci.,855:43–60, 2021.


	Introduction
	Outcome Classes
	Game Values
	Temperature
	Enumeration

