THE (3 + 1)-FREE CONJECTURE OF
CHROMATIC SYMMETRIC FUNCTIONS

Steph van Willigenburg
University of British Columbia

Alberta-Montana Combinatorics and Algorithms Days at BIRS
June 23 - 25 2023



CHROMATIC POLYNOMIAL: BIRKHOFF 1912

Given G with vertices V(G) a proper colouring s of G in k colours
is
k:V(G)—{1,2,3,...,k}

’

so if u,v € V(G) are joined by an edge then
k(u) # Kk(v).

EXAMPLE

—0®x 6—™©0v
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CHROMATIC POLYNOMIAL: BIRKHOFF 1912

Given G the chromatic polynomial
Y ¢(k) is the number of proper
colourings with k colours.

VAN

has x(k) = k(k — 1)(k — 2).



DELETION-CONTRACTION

Delete e: remove edge € to get G — ¢.

G

Contract e: shrink edge € + identify vertices to get G /.

G



DELETION-CONTRACTION

Delete e: remove edge € to get G — ¢.
Contract e: shrink edge € + identify vertices to get G /.
THEOREM (DELETION-CONTRACTION)

X6 (k) — x6—e(k) + x6/e(k) =0



CHROMATIC SYMMETRIC FUNCTION: STANLEY 1995

Given G with vertices V(G) a proper colouring k of G is
k:V(G)—{1,2,3,...}
so if u,v € V(G) are joined by an edge then

k(u) # k(v).

EXAMPLE

—0Ox 6—™0v



CHROMATIC SYMMETRIC FUNCTION: STANLEY 1995

Given a proper colouring x of vertices vi, va, ..., vy associate a
monomial in commuting variables xi, x2, X3, . ..

X(vi)X(v2) "7 Xe(vw)-

EXAMPLE

®—® gives x1xo.
®@—® gives XoXx1 = X1X2.
gives x1x3.



CHROMATIC SYMMETRIC FUNCTION: STANLEY 1995

Given G with vertices vq, v, ..., vy the
chromatic symmetric function is

XG - Z Xie(vi)Xk(va) " Xk(vp)

where the sum over all proper colourings «.



CHROMATIC SYMMETRIC FUNCTION: STANLEY 1995

® has Xg(x1, x2,x3) = xl2 + x22 + ><32 + 2x1x0 + 2x0x3 + 2x1x3.



MULTI-DELETION

THEOREM (TRIPLE-DELETION: ORELLANA-SCOTT 2014)

Let G be such that €1, €2, €3 form a triangle. Then

X6 = Xe—{a} = X6—{e} T X6—{e,2} = 0



MULTI-DELETION

THEOREM (TRIPLE-DELETION: ORELLANA-SCOTT 2014)

Let G be such that €1, €3, €3 form a triangle. Then

Xe — Xe—{a} = Xe—{e} T XG—{e1,e0} = 0-

THEOREM (k-DELETION: DAHLBERG-VW 2018)

Let G be such that €1, €, ..., €, form a k-cycle for k > 3. Then

Z (_1)|5|XG*U,'65{6,'} - 0
SClk—1]

Deletion-contraction weighted Xg: Crew-Spirkl 2020.



SYMMETRIC FUNCTIONS

A symmetric function is a formal power series f in commuting
variables xi, xp, ... such that for all permutations 7

f(x1,x2,...) = F(Xr(a)s Xr(2)s - - -)-



SYMMETRIC FUNCTIONS

A symmetric function is a formal power series f in commuting
variables xi, xp, ... such that for all permutations 7
f(x1,x2,...) = F(Xr(a)s Xr(2)s - - -)-
Xg is a symmetric function.

e o0 .1, e oo

x2x0 X1 X3

Let

N=EPAY C Qllxa, %2, .- ]

N>0

be the algebra of symmetric functions with A" spanned by ...



CLASSICAL BASIS: POWER SUM

A partition A=Ay > --- > Ay > 0 of N is a list of positive integers
whose sum is N: 3221 + 8.

The i-th power sum symmetric function is
pi = x| + x4+ xh 4+
and for A= A1+ Ny

Px = p)\l P)\;

EXAMPLE
P21=P2P1:(X12-|-x22+X32-|—---)(x1-|-x2.|_x3+...)



CLASSICAL BASIS: POWER SUM
Given S C E(G), A(S) is the partition determined by the
connected components of G restricted to S.

EXAMPLE

€1 €
G =0—0—-0
€

1 €
G restricted to S = {2} isO O—CO and A(S) = 21.

THEOREM (STANLEY 1995)

Xe= Y (—1)*lpys
SCE(G)



CLASSICAL BASIS: POWER SUM

G restricted to

€1 €
o S={e1,e2} is O—O—0 and A\(S) =3
€1 €
e S={a}isO—0O Oand A(S) =21
€1 €
e S={e}isO O——0and A(S) =21
€1 €
e 5=0isO O Oand\(S)=111.

X6 = p3 — 2p21 + p111



CLASSICAL BASIS: ELEMENTARY

The i-th elementary symmetric function is
el f— Z )(J-l “ e in
< <ji
and for A= A1+ Ny

EN =€)y €Ny

EXAMPLE

e1 = eper = (xpx2 + x1x3 + xox3 + -+ )(x1 +x2 +x3+ - - -

G=0—0—-20 Xe =363+ en



CLASSICAL BASIS: ELEMENTARY
THEOREM (STANLEY 1995)

If
X =) crex
By

then

E ¢\ = number of acyclic orientations with k sinks.
A with k parts

EXAMPLE

G=0—0—"-20 Xc = 3e3 + e
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CLASSICAL BASIS: ELEMENTARY
THEOREM (STANLEY 1995)

If
X =) crex
By

then
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CLASSICAL BASIS: ELEMENTARY
THEOREM (STANLEY 1995)

If
X =) crex
By

then

E ¢\ = number of acyclic orientations with k sinks.
A with k parts

EXAMPLE

G=6—o—» X =363+ e



PARTITIONS AND DIAGRAMS
A partition A=Ay > -+ > Xy > 0 of N is a list of positive integers
whose sum is N: 3221 I~ 8.

The diagram A = Ay > --- > Ay > 0 is the array of boxes with );
boxes in row i from the top.

3221



SEMI-STANDARD YOUNG TABLEAUX

A semi-standard Young tableau (SSYT) T of shape X is a filling

with 1,2, 3,... so rows weakly increase and columns increase.
1]1]1]
2
415
6]

Given an SSYT T we have

« 7)(;%15 #2s #35 .

Xf’ X2 xf X5X6



CLASSICAL BASIS: SCHUR

The Schur function is

S\ = E XT.

T SSYT of shape A

EXAMPLE

So1 = X12X2 + x1x22 -+ x12X3 -+ xlxg -+ X22X3 + x2x§ + 2x1x0x3 + - - -

1|21 ]1][2]3][2]2][2]3][1]2]1]3]
2] (2] [3] [3] [3] [3] [3] |2

¢6=0—0—7>~0 X6 = 51 + 4s111

(Wang-Wang 2020) Intricate formula for Xg.




e-POSITIVITY AND SCHUR-POSITIVITY

G is e-positive if X¢g is a positive linear combination of e).

G is Schur-positive if X¢g is a positive linear combination of s).
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G is Schur-positive if X¢g is a positive linear combination of s).
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e-POSITIVITY AND SCHUR-POSITIVITY

G is e-positive if X¢g is a positive linear combination of e).

G is Schur-positive if X¢g is a positive linear combination of s).

O—O O has Xe=e1+3e3 VvV
X6 =4s111+51 vV

has Xe = ex11—2¢ex + besy +4des X
Xe = 8s1111 + bsp11—500 + 531 X

K13 : Smallest graph that is not e-positive. Smallest graph that is
not Schur-positive.



e-POSITIVITY AND SCHUR-POSITIVITY

For A= X1+ N

e\ = Z K“)\Sut
1%

where K\ = # SSYTs of shape p filled with A; 1s, ..., A, s, and

/1" is the transpose of 1 along the downward diagonal.

Hence K, > 0 and

e-positivity implies Schur-positivity.

EXAMPLE

€1 = S21 + S111 1‘ ‘1|1|2‘




WHY e-POSITIVITY AND SCHUR-POSITIVITY?

o If e-positive, then it is related to permutation representations.
@ We have e-positivity implies Schur-positivity.

o If Schur-positive, then it arises as the Frobenius image of
some representation of a symmetric group.

@ If Schur-positive, then it arises as the character of a
polynomial representation of a general linear group.

@ The Stanley-Stembridge conjecture.



e-POSITIVITY AND SCHUR-POSITIVITY

CONJECTURE (STANLEY-STEMBRIDGE 1993)

If G is an incomparability graph of a (3 + 1)-free poset then Xg is
e-positive.
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e-POSITIVITY AND SCHUR-POSITIVITY

CONJECTURE (STANLEY-STEMBRIDGE 1993)

If G is an incomparability graph of a (3 + 1)-free poset then Xg is

e-positive.

THEOREM (GASHAROV 1996)

If G is an incomparability graph of a (3 + 1)-free poset then X¢ is
Schur-positive.



e-POSITIVITY AND SCHUR-POSITIVITY

Guay-Paquet showed enough to prove it for unit interval graphs,
namely a connected intersection of complete graphs in a row.

AR

K, K, Ky K, Ks K

CONJECTURE (STANLEY-STEMBRIDGE 1993)

If G is a connected intersection of complete graphs then G is

e-positive.

EXAMPLE



KNOWN CASES OF e-POSITIVE GRAPHS
1993 Stanley-Stembridge: two complete graphs intersecting.

1995 Stanley: complete graphs K> intersecting at vertices

*"—o—0—0—90

making a path.

2001 Gebhard-Sagan: complete graphs intersecting only at

vertices.

2018 Dahlberg: complete graphs K3 intersecting only at

edges.
pVAVAVY



RESULTS: ALINIAEIFARD, WANG, VW 2021

Note: We can draw the complete graph as follows.



RESULTS: ALINIAEIFARD, WANG, VW 2021
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graph and melt edges away from the right (or left).

Note: This is an intersection of two complete graphs.
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RESULTS: ALINIAEIFARD, WANG, VW 2021

We have e-positivity for peaky snows: Take the complete graph
and melt edges away and add one dribble from the right (or left).

~

Note: This is an intersection of complete graphs.



NEW CASES OF STANLEY-STEMBRIDGE
THEOREM (ALINIAEIFARD-WANG-VW 2021)
If G is a connected intersection at the rightmost and leftmost
vertex of any combination of
@ ice cream scoops
@ snowy peaks

@ peaky snows

complete graphs
o triangular ladders

then G is e-positive.

EXAMPLE




WIDEN THE CONJECTURE - PART 1
e-POSITIVITY OF TREES: DAHLBERG, SHE, VW 2020

N ‘ 1 2 3 45 6 7 8 9 10 11 12 13
trees 1 1 2 3 6 11 23 47 106 235 551 1301
eepos |1 1 1 1 2 1 3 1 2 2 5 1 4




e-POSITIVITY OF TREES

THEOREM (DAHLBERG-SHE-VW 2020)

Any tree with N vertices and a vertex of degree
d>logo N+1

is not e-positive.

EXAMPLE

.}._._.

is not e-positive.



e-POSITIVITY OF TREES

CONJECTURE (DAHLBERG-SHE-VW 2020)

Any tree with N vertices and a vertex of degree
d>4

is not e-positive.
(Zheng 2020) True for d > 6.

EXAMPLE

is not e-positive.



e-POSITIVITY TEST OF WOLFGANG III 1997
A graph has a connected partition of type
A= A1--- Ag if we can find disjoint subsets of
vertices Vq,...,V, € V(G) so
o ViU---UV, = V(G)
@ restricting edges to each V; gives connected
components with \; vertices.

EXAMPLE

"

has connected partitions of type 4,31,211 and 1111

e ele oo e

but is missing a connected partition of type 22.



e-POSITIVITY TEST OF WOLFGANG III 1997

THEOREM (WOLFGANG III 1997)

If a connected graph G with N vertices is e-positive, then G has a
connected partition of type X\ for every partition A+ N.

Test: If G does not have a connected partition of some type
then G is not e-positive.

EXAMPLE

"

does not have a connected partition of type 22. Hence it is not
e-positive.



SCHUR-POSITIVITY OF TREES

THEOREM (DAHLBERG-SHE-VW 2020)

Any tree with N vertices and a vertex of degree

N
d i
> |2
is not Schur-positive.

EXAMPLE

.>._._.

is not Schur-positive.



CONJECTURES

A spider
S(i,j, k,...)

consists of disjoint paths P;, P;, Py, ... and a central vertex joined
to a leaf in each path.

’_>._._._._._._.

@ Any tree with a vertex of degree 4 or 5 is not e-positive.

@ The family of spiders S(2(2m + 1),2m, 1) is e-positive. More
generally, S(n(n'm+ 1), nlm, 1) is e-positive.

EXAMPLE
5(6,2,1)

@ If a spider is e-positive, then its line graph is as well.



WIDEN THE CONJECTURE - PART 2
STANLEY’S WIDENING: DAHLBERG, FOLEY, VW
JEMS 2020

Stanley 1995:

We don’t know of a graph which is not contractible to Ki3 (even
regarding multiple edges of a contraction as a single edge) which is
not e-positive.



WIDEN THE CONJECTURE - PART 2
STANLEY’S WIDENING: DAHLBERG, FOLEY, VW
JEMS 2020

Stanley 1995:

We don’t know of a graph which is not contractible to Ki3 (even
regarding multiple edges of a contraction as a single edge) which is
not e-positive.

We do.




THE CLAW AKA Ki3



THE CLAW AKA Ki3

Contracts to the claw: shrinking edges + identifying vertices +
removing multiple edges = claw.

G



A PICTURE SPEAKS 1000 WORDS
Stanley 1995:

We don't know of a graph which is not contractible to Ki3 (even
regarding multiple edges of a contraction as a single edge) which is
not e-positive.

claw-contractible e-positive




CLAW-CONTRACTIBLE-FREE: BROUWER-VELDMAN
1987

G is claw-contractible-free if and only if deleting all sets of 3
non-adjacent vertices gives disconnection.

EXAMPLE

Q0 0 0




CLAW-CONTRACTIBLE-FREE: BROUWER-VELDMAN
1987

G is claw-contractible-free if and only if deleting all sets of 3
non-adjacent vertices gives disconnection.

EXAMPLE

QO 0




...WITH CHROMATIC SYMMETRIC FUNCTION

Q0 0 X

2ep00 — be33 + 26e + 28e51 4+ 10264
2e301 — beszs  + 24erp + 40es1 + 12064
2e00 — 12e33 + 30esp + 24e51 + 186¢5
2e301 — 6e33  + 20e + 32e51 + 228es



...WITH CHROMATIC SYMMETRIC FUNCTION

Q0 0 X

2ep00 — be33 + 26e + 28e51 4+ 10264
2e301 — beszs  + 24erp + 40es1 + 12064
2ep00 — 12e33 + 30e40 + 24e51 + 1866eg
2e301 — 6e33  + 20e + 32e51 + 228es

Smallest counterexamples to Stanley’s statement.



INFINITE FAMILY: SALTIRE GRAPHS

The saltire graph SA,, , for n > 3 is given by

%) Vi Vo V1
// \\
/ \
v3 Ve left n-path right n-path
\ 1/
\ /
va > Vat1 Vat2

with SAsz 3 on the left.



INFINITE FAMILY: SALTIRE GRAPHS

THEOREM (DAHLBERG-FOLEY-VW 2020)

SAp.n for n > 3 is claw-contractible-free and

[enn] Xsa,,, = —n(n —1)(n —2).

CCF:



FOR ANY n: AUGMENTED SALTIRE GRAPHS

The augmented saltire graphs AS, ,, ASp n41 for n > 3.

v Vi v Vi v Vi
\/7 I/ \\
v3 Ve V3 left n-path I t n(+1)-path
RN
va > va > Va+1 Va2

THEOREM (DAHLBERG-FOLEY-VW 2020)

ASpn and ASp n41 for n > 3 are claw-contractible-free and

[enn] Xas, , = [e(n+1)nlXas, ,.s = —n(n—1)(n —2).



CLAW-FREE: BEINEKE 1970

Claw-free: does not contain the claw as an induced subgraph of
the graph.




CLAW-FREE: BEINEKE 1970

Claw-free: does not contain the claw as an induced subgraph of
the graph.

NS
4




CLAW-FREE: BEINEKE 1970

G is claw-free if there exists an edge partition giving complete
graphs, every vertex in at most two.

"%




AND CLAW-FREE: TRIANGULAR TOWER GRAPHS

The triangular tower graph 7T, , , for n > 3 is given by

with TT333 on the left.




AND CLAW-FREE: TRIANGULAR TOWER GRAPHS

THEOREM (DAHLBERG-FOLEY-VW 2020)

TThnn for n > 3 is claw-contractible-free, claw-free and

[ennn]XTTn,n,n = _n(n - ]‘)2(n _ 2)

CCF+-CF:

Q

——_—_—O----

————e-0-
-O----

{



CONJECTURES

@ Bloated K3 3:

with 3n vertices has

—(3 % 2")esn.

@ No G exists that is connected, claw-contractible-free,
claw-free and not e-positive with 10, 11 vertices.



(]

SCARCITY

N = 6: 4 of 112 connected graphs ccf and not e-positive.

N = 7: 7 of 853 connected graphs ccf and not e-positive.

N = 8: 27 of 11117 connected graphs ccf and not e-positive.
Of 293 terms in TT777 only —ve at e777.

Of 564 terms in TTggg only —ves at eggg and —1944e444444.

Of 1042 terms in TT979’9 only —ves at eggg, —768€333333333-



A PICTURE SPEAKS 1000 WORDS

claw-contractible e-positive

induced claw




A PICTURE SPEAKS 1000 WORDS

claw-contractible e-positive

SAnn
induced claw




In general, e-positivity has nothing to do with the claw.

Thank you very much!



