A survey of extremal co-degree problems for hypergraphs

Cory Palmer

University of Montana

Alberta-Montana Combinatorics and Algorithms Day

Question: What is the maximum number of edges possible in an *n*-vertex F-free graph G?

Question: What is the maximum number of edges possible in an *n*-vertex F-free graph G?

Turán theorem: for F a complete graph K_k we have

$$|E(G)| \leq \left(1 - \frac{1}{k-1}\right) \frac{n^2}{2}.$$

Question: What is the maximum number of edges possible in an *n*-vertex F-free graph G?

Turán theorem: for F a complete graph K_k we have

$$|E(G)| \leq \left(1 - \frac{1}{k-1}\right) \frac{n^2}{2}.$$

Erdős-Stone-Simonovits theorem: for F a graph of chromatic number k we have

$$|E(G)| \leq \left(1 - \frac{1}{k-1}\right) \frac{n^2}{2} + o(n^2).$$

An *r*-graph *H* is simply a family of subsets of size *r* from a vertex set V

An *r*-graph *H* is simply a family of subsets of size *r* from a vertex set $V = \{1, 2, ..., n\}$

So a 2-graph is the usual notion of a graph. Triple systems are 3-graphs.

So a 2-graph is the usual notion of a graph. Triple systems are 3-graphs.

Let $ex_r(n, F)$ denote the maximum number of *r*-edges in an *F*-free *n*-vertex *r*-graph.

So a 2-graph is the usual notion of a graph. Triple systems are 3-graphs.

Let $ex_r(n, F)$ denote the maximum number of *r*-edges in an *F*-free *n*-vertex *r*-graph.

- Turán Theorem: $\operatorname{ex}_2(n, \mathcal{K}_k) \sim \left(1 rac{1}{k-1}\right) \binom{n}{2}.$
- ESS Theorem: $ex_2(n, F) = \left(1 \frac{1}{\chi(F) 1}\right) \binom{n}{2} + o(n^2).$

So a 2-graph is the usual notion of a graph. Triple systems are 3-graphs.

Let $ex_r(n, F)$ denote the maximum number of *r*-edges in an *F*-free *n*-vertex *r*-graph.

- Turán Theorem: $ext{ex}_2(n, \mathcal{K}_k) \sim \left(1 rac{1}{k-1}
 ight) {n \choose 2}.$
- ESS Theorem: $ex_2(n, F) = \left(1 \frac{1}{\chi(F) 1}\right) \binom{n}{2} + o(n^2).$
- Turán Tetrahedron Conjecture: $ex_3(n, K_4^3) \sim \frac{5}{9} {n \choose 3}$.

$$\pi(F) := \lim_{n \to \infty} \frac{\operatorname{ex}_r(n, F)}{\binom{n}{r}}.$$

$$\pi(F) := \lim_{n \to \infty} \frac{\operatorname{ex}_r(n, F)}{\binom{n}{r}}.$$

 $\pi(F)$ measures the proportion of edges possible without a copy of F.

$$\pi(F) := \lim_{n \to \infty} \frac{\operatorname{ex}_r(n, F)}{\binom{n}{r}}.$$

 $\pi(F)$ measures the proportion of edges possible without a copy of F.

Turán:
$$\pi(K_k) = 1 - \frac{1}{k-1}$$
. ESS: $\pi(F) = 1 - \frac{1}{\chi(F) - 1}$.

$$\pi(F) := \lim_{n \to \infty} \frac{\operatorname{ex}_r(n, F)}{\binom{n}{r}}.$$

 $\pi(F)$ measures the proportion of edges possible without a copy of F.

Turán:
$$\pi(K_k) = 1 - \frac{1}{k-1}$$
. ESS: $\pi(F) = 1 - \frac{1}{\chi(F) - 1}$.

Does the limit exist?

$$\pi(F) := \lim_{n \to \infty} \frac{\exp(n, F)}{\binom{n}{r}}$$

 $\pi(F)$ measures the proportion of edges possible without a copy of F.

Turán:
$$\pi(K_k) = 1 - \frac{1}{k-1}$$
. ESS: $\pi(F) = 1 - \frac{1}{\chi(F) - 1}$.

Does the limit exist? Yes, the function $\frac{\exp(n,F)}{\binom{n}{r}}$ is monotone increasing and bounded above by 1.

The function
$$\frac{\exp(n, F)}{\binom{n}{r}}$$
 is monotone increasing in n

Proof.

• Suppose G is an *n*-vertex F-free r-graph with $ex_r(n, F)$ edges.

- Suppose G is an *n*-vertex F-free r-graph with $ex_r(n, F)$ edges.
- Double-count the non-incident edge-vertex pair (e, v).

- Suppose G is an *n*-vertex F-free r-graph with $ex_r(n, F)$ edges.
- Double-count the non-incident edge-vertex pair (e, v).
- Fix e, then v.

- Suppose G is an *n*-vertex F-free r-graph with $ex_r(n, F)$ edges.
- Double-count the non-incident edge-vertex pair (e, v).
- Fix e, then v.
- Fix v, then e.

- Suppose G is an *n*-vertex F-free r-graph with $ex_r(n, F)$ edges.
- Double-count the non-incident edge-vertex pair (e, v).
- Fix e, then v.
- Fix v, then e.
- Thus, $(n-r) \cdot \exp_r(n, F) \le n \cdot \exp_r(n-1, F)$.

- Suppose G is an *n*-vertex F-free r-graph with $ex_r(n, F)$ edges.
- Double-count the non-incident edge-vertex pair (e, v).
- Fix e, then v.
- Fix v, then e.
- Thus, $(n-r) \cdot \exp(n, F) \leq n \cdot \exp(n-1, F)$.
- Solving for ex(n, F) and dividing both sides by $\binom{n}{r}$ gives

Proof.

- Suppose G is an *n*-vertex F-free r-graph with $ex_r(n, F)$ edges.
- Double-count the non-incident edge-vertex pair (e, v).
- Fix e, then v.
- Fix v, then e.
- Thus, $(n-r) \cdot ex_r(n, F) \leq n \cdot ex_r(n-1, F)$.

Solving for ex(n, F) and dividing both sides by $\binom{n}{r}$ gives

$$\frac{\operatorname{ex}_r(n,F)}{\binom{n}{r}} \leq \frac{n}{n-r} \frac{\operatorname{ex}_r(n-1,F)}{\binom{n}{r}} = \frac{\operatorname{ex}_r(n-1,F)}{\binom{n-1}{r}}.$$

Turán density

F	$\leq \pi(F)$	$\pi(F) \leq$
K ₄ ³	5/9 (Turán)	0.5615 (Baber)
K_4^-	2/7 (Frankl-Füredi)	0.28689 (Vaughn)
F	3/4 (Sós)	3/4 (de Caen-Füredi)
J_4	1/2 (Bollobás-Leader-Malvenuto)	0.50409 (Vaughn)

Theorem (Supersaturation)

Fix an r-graph F. For $\varepsilon > 0$, there exists $\delta > 0$ such that if G is an n-vertex r-graph with

$$|E(G)| > (\pi(F) + \varepsilon) {n \choose r},$$

then G contains $\delta\binom{n}{|V(F)|}$ copies of F.

Theorem (Supersaturation)

Fix an r-graph F. For $\varepsilon > 0$, there exists $\delta > 0$ such that if G is an n-vertex r-graph with

$$|E(G)| > (\pi(F) + \varepsilon) {n \choose r},$$

then G contains $\delta\binom{n}{|V(F)|}$ copies of F.

The idea behind the supersaturation theorem is that if we exceed the extremal number of F by enough, then not only must there be a copy of F, but there will be many.

Fix a 2-graph F. For $\varepsilon > 0$, there exists $\delta > 0$ such that if G is an n-vertex F-free 2-graph with

$$|E(G)| = (\pi(F) - \varepsilon) {n \choose 2},$$

then G can be transformed into a Turán graph by adding and removing at most δn^2 edges.

Fix a 2-graph F. For $\varepsilon > 0$, there exists $\delta > 0$ such that if G is an n-vertex F-free 2-graph with

$$|E(G)| = (\pi(F) - \varepsilon) {n \choose 2},$$

then G can be transformed into a Turán graph by adding and removing at most δn^2 edges.

• Only for r = 2 as the "extremal graph" for F is essentially unique.

Fix a 2-graph F. For $\varepsilon > 0$, there exists $\delta > 0$ such that if G is an n-vertex F-free 2-graph with

$$|E(G)| = (\pi(F) - \varepsilon) {n \choose 2},$$

then G can be transformed into a Turán graph by adding and removing at most δn^2 edges.

- Only for r = 2 as the "extremal graph" for F is essentially unique.
- There are many non-isomorphic "extremal 3-graphs" for K_4^3 , so a stability theorem seems impossible.

Fix a 2-graph F. For $\varepsilon > 0$, there exists $\delta > 0$ such that if G is an *n*-vertex F-free 2-graph with

$$|E(G)| = (\pi(F) - \varepsilon) {n \choose 2},$$

then G can be transformed into a Turán graph by adding and removing at most δn^2 edges.

- Only for r = 2 as the "extremal graph" for F is essentially unique.
- There are many non-isomorphic "extremal 3-graphs" for K_4^3 , so a stability theorem seems impossible.
- On the other hand, the extremal graph for the Fano plane ${\mathbb F}$ is unique and has been shown to be stable.

Clearly, the Turán denstiy of a graph F is in the interval [0, 1], but what values are possible?

Clearly, the Turán denstiy of a graph F is in the interval [0, 1], but what values are possible?

For 2-graphs, the possible densities are $0, \frac{1}{2}, \frac{2}{3}, \ldots, \frac{k-1}{k}, \ldots$

Clearly, the Turán denstiy of a graph F is in the interval [0, 1], but what values are possible?

For 2-graphs, the possible densities are $0, \frac{1}{2}, \frac{2}{3}, \ldots, \frac{k-1}{k}, \ldots$

Theorem (Erdős Degeneracy Theorem)

An r-partite r-graph F has Turán number $ex(n, F) = o(n^r)$, i.e, $\pi(F) = 0$.

This implies no density in the range $(0, \frac{r!}{r'})$, e.g., for 3-graphs no value in $(0, \frac{2}{9})$.
Clearly, the Turán denstiy of a graph F is in the interval [0, 1], but what values are possible?

For 2-graphs, the possible densities are $0, \frac{1}{2}, \frac{2}{3}, \ldots, \frac{k-1}{k}, \ldots$

Theorem (Erdős Degeneracy Theorem)

An r-partite r-graph F has Turán number $ex(n, F) = o(n^r)$, i.e, $\pi(F) = 0$.

This implies no density in the range $(0, \frac{r!}{r'})$, e.g., for 3-graphs no value in $(0, \frac{2}{9})$.

Erdős question: Is there a δ such that no 3-graph satisfies $\pi(F) \in \left(\frac{2}{9}, \frac{2}{9} + \delta\right)$?

Clearly, the Turán denstiy of a graph F is in the interval [0, 1], but what values are possible?

For 2-graphs, the possible densities are $0, \frac{1}{2}, \frac{2}{3}, \ldots, \frac{k-1}{k}, \ldots$

Theorem (Erdős Degeneracy Theorem)

An r-partite r-graph F has Turán number $ex(n, F) = o(n^r)$, i.e, $\pi(F) = 0$.

This implies no density in the range $(0, \frac{r!}{r'})$, e.g., for 3-graphs no value in $(0, \frac{2}{9})$.

Erdős question: Is there a δ such that no 3-graph satisfies $\pi(F) \in \left(\frac{2}{9}, \frac{2}{9} + \delta\right)$? Does density $\frac{2}{9}$ jump?

What densities jump for *r*-graphs?

What densities jump for *r*-graphs?

COMBINATORICA 4 (2-3) (1984) 149-159

HYPERGRAPHS DO NOT JUMP

P. FRANKL and V. RÖDL

Received 3 November 1983

The number α , $0 \le \alpha \le 1$, is a jump for r if for any positive ε and any integer m, $m \ge r$, any r-uniform hypergraph with $n > n_n(\varepsilon, m)$ vertices and at least $(\alpha + \varepsilon) \binom{n}{r}$ edges contains a subgraph with m vertices and at least $(\alpha + \varepsilon) \binom{m}{r}$ edges, where $c = c(\alpha)$ does not depend on ε and m. It follows from a theorem of Erdős, Stone and Simonovits that for r = 2 every α is a jump. Erdős asked whether the same is true for $r \ge 3$. He offered § 1000 for answering this question. In this paper we give a negative answer by showing that $1 - \frac{1}{r^{r-1}}$ is not a jump if $r \ge 3$, l > 2r.

What densities jump for *r*-graphs?

Combinatorics, Probability and Computing (2011) 20, 161–171. © Cambridge University Press 2010 doi:10.1017/S0963548310000222

Hypergraphs Do Jump

RAHIL BABER and JOHN TALBOT[†]

Department of Mathematics, UCL, London, WC1E 6BT, UK (e-mail: rahilbaber@hotmail.com, talbot@math.ucl.ac.uk)

Received 27 April 2010; revised 21 May 2010; first published online 13 July 2010

We say that $\alpha \in [0, 1)$ is a *jump* for an integer $r \ge 2$ if there exists $c(\alpha) > 0$ such that for all $\epsilon > 0$ and all $t \ge 1$, any *r*-graph with $n \ge n_0(\alpha, \epsilon, t)$ vertices and density at least $\alpha + \epsilon$ contains a subgraph on *t* vertices of density at least $\alpha + \epsilon$.

The Erdős–Stone–Simonovits theorem [4, 5] implies that for r = 2, every $\alpha \in [0, 1)$ is a jump. Erdős [3] showed that for all $r \ge 3$, every $\alpha \in [0, r!/r')$ is a jump. Moreover he made his famous 'jumping constant conjecture', that for all $r \ge 3$, every $\alpha \in [0, 1)$ is a jump. Frankl and Rödl [7] disproved this conjecture by giving a sequence of values of non-jumps for all $r \ge 3$.

We use Razborov's flag algebra method [9] to show that jumps exist for r = 3 in the interval [2/9, 1). These are the first examples of jumps for any $r \ge 3$ in the interval $[r!/r^r, 1)$. To be precise, we show that for r = 3 every $\alpha \in [0.2299, 0.2316)$ is a jump.

We also give an improved upper bound for the Turán density of $K_4^- = \{123, 124, 134\}$: $\pi(K_4^-) \leq 0.2871$. This in turn implies that for r = 3 every $\alpha \in [0.2871, 8/27)$ is a jump.

10 / 20

The minimum co-degree of H is denoted $\delta_{r-1}(H)$.

The minimum co-degree of H is denoted $\delta_{r-1}(H)$.

The **co-degree Turán number** coex(n, F) is the maximum value of $\delta_{r-1}(H)$ among all *n*-vertex *F*-free *r*-graphs *H*.

$$\gamma(F) := \lim_{n \to \infty} \frac{\operatorname{coex}(n, F)}{n}.$$

$$\gamma(F) := \lim_{n \to \infty} \frac{\operatorname{coex}(n, F)}{n}.$$

This is the maximum possible minimum co-degree of an *n*-vertex F-free *r*-graph normalized by *n*.

$$\gamma(F) := \lim_{n \to \infty} \frac{\operatorname{coex}(n, F)}{n}.$$

This is the maximum possible minimum co-degree of an *n*-vertex F-free *r*-graph normalized by *n*.

Does the limit exist?

$$\gamma(F) := \lim_{n \to \infty} \frac{\operatorname{coex}(n, F)}{n}.$$

This is the maximum possible minimum co-degree of an n-vertex F-free r-graph normalized by n.

Does the limit exist? Yes, due to a nice probablistic argument of Mubayi and Zhao.

F	$\leq \gamma(F)$	$\gamma(F) \leq$
K ₄ ³	1/2 (Nagle-Czygrinow)	0.529 (Balogh-Clemens-Lidický)
K_4^-	1/4 (Nagle)	1/4 (Falgas-Ravry-Pikhurko-Vaughan-Volec)
F	1/2 (Mubayi)	1/2 (Mubayi)
J ₄	1/4 (Balogh-Clemens-Lidický)	0.473 (Balogh-Clemens-Lidický)

■ Consider a random tournament T on [n] where each pair i < j is oriented as ij or ji with probability ¹/₂.

- Consider a random tournament T on [n] where each pair i < j is oriented as ij or ji with probability ¹/₂.
- A triple i < j < k becomes a 3-edge of H if ij and ki are arcs.

- Consider a random tournament T on [n] where each pair i < j is oriented as ij or ji with probability ¹/₂.
- A triple i < j < k becomes a 3-edge of H if ij and ki are arcs.
- Claim: H is K_4^3 -free.

- Consider a random tournament T on [n] where each pair i < j is oriented as ij or ji with probability ¹/₂.
- A triple i < j < k becomes a 3-edge of H if ij and ki are arcs.
- Claim: H is K_4^3 -free.
- Claim: *H* has co-degree $\frac{n}{2} o(n)$ with positive probability.

- Consider a random tournament T on [n] where each pair i < j is oriented as ij or ji with probability ¹/₂.
- A triple i < j < k becomes a 3-edge of H if ij and ki are arcs.
- Claim: H is K_4^3 -free.
- Claim: H has co-degree $\frac{n}{2} o(n)$ with positive probability.

If we instead make a 3-edge if ij, jk and ki are arcs, then H will be K_4^- -free with co-degree $\frac{n}{4} - o(n)$.

Stability (Falgas-Ravry et al.): No general theorem, but, for example, all near-extremal K_4^- -free configurations look like the random tournament construction.

Stability (Falgas-Ravry et al.): No general theorem, but, for example, all near-extremal K_4^- -free configurations look like the random tournament construction.

Jumps (Mubayi-Zhao): The values of $\gamma(F)$ are dense in [0, 1].

Stability (Falgas-Ravry et al.): No general theorem, but, for example, all near-extremal K_4^- -free configurations look like the random tournament construction.

Jumps (Mubayi-Zhao): The values of $\gamma(F)$ are dense in [0, 1]. They conjecture that all values in [0, 1] are possible.

The minimum positive co-degree of H is denoted $\delta_{r-1}^+(H)$, i.e., the maximum k such that for all (r-1)-sets A, the co-degree of A is 0 or at least k.

The minimum positive co-degree of H is denoted $\delta_{r-1}^+(H)$, i.e., the maximum k such that for all (r-1)-sets A, the co-degree of A is 0 or at least k.

The **positive co-degree Turán number** $co^+ex(n, F)$ is the maximum value $\delta^+_{r-1}(H)$ among all *n*-vertex *F*-free *r*-graphs *H*.

$$\gamma(F) := \lim_{n \to \infty} \frac{\operatorname{co}^+ \operatorname{ex}(n, F)}{n}.$$

$$\gamma(F) := \lim_{n \to \infty} \frac{\operatorname{co}^+ \operatorname{ex}(n, F)}{n}.$$

This is the maximum possible minimum positive co-degree of an n-vertex F-free r-graph normalized by n.

$$\gamma(F) := \lim_{n \to \infty} \frac{\operatorname{co}^+ \operatorname{ex}(n, F)}{n}.$$

This is the maximum possible minimum positive co-degree of an n-vertex F-free r-graph normalized by n.

Does the limit exist? Supersaturation?

$$\gamma(F) := \lim_{n \to \infty} \frac{\operatorname{co}^+ \operatorname{ex}(n, F)}{n}.$$

This is the maximum possible minimum positive co-degree of an n-vertex F-free r-graph normalized by n.

Does the limit exist? Supersaturation? Yes, but you'll have to wait for the next talk!

F	$\leq \gamma^+(F)$	$\gamma^+(F) \leq$
K ₄ ³	1/2 (Halfpap-Palmer-Lemons)	0.54296 (Volec)
K_4^-	1/3 (Halfpap-Palmer-Lemons)	1/3 (Halfpap-Palmer-Lemons)
F	2/3 (Halfpap-Palmer-Lemons)	2/3 (Halfpap-Palmer-Lemons)
J ₄	1/2 (Halfpap-Palmer-Lemons)	$0.58~_{(Balogh-Lidický)}$

Stability:

• There are exactly two "extremal 3-graphs" for $co^+ex(n, K_4^-)$.

- There are exactly two "extremal 3-graphs" for $co^+ex(n, K_4^-)$.
- A K₄⁻-free 3-graph with positive co-degree nearly co⁺ex(n, K₄⁻) looks like one of the two extremal 3-graphs (Halfpap, '23+).

- There are exactly two "extremal 3-graphs" for $co^+ex(n, K_4^-)$.
- A K₄⁻-free 3-graph with positive co-degree nearly co⁺ex(n, K₄⁻) looks like one of the two extremal 3-graphs (Halfpap, '23+).

Jumps:
Stability: No general theorem, but cool examples.

- There are exactly two "extremal 3-graphs" for $co^+ex(n, K_4^-)$.
- A K₄⁻-free 3-graph with positive co-degree nearly co⁺ex(n, K₄⁻) looks like one of the two extremal 3-graphs (Halfpap, '23+).

Jumps: Still open in general.

Stability: No general theorem, but cool examples.

- There are exactly two "extremal 3-graphs" for $co^+ex(n, K_4^-)$.
- A K₄⁻-free 3-graph with positive co-degree nearly co⁺ex(n, K₄⁻) looks like one of the two extremal 3-graphs (Halfpap, '23+).

Jumps: Still open in general.

• No value of $\gamma^+(F)$ in $(0, \frac{1}{3})$ (Halfpap-Lemons-Palmer, '23+).

Stability: No general theorem, but cool examples.

- There are exactly two "extremal 3-graphs" for $co^+ex(n, K_4^-)$.
- A K₄⁻-free 3-graph with positive co-degree nearly co⁺ex(n, K₄⁻) looks like one of the two extremal 3-graphs (Halfpap, '23+).

Jumps: Still open in general.

- No value of $\gamma^+(F)$ in $(0, \frac{1}{3})$ (Halfpap-Lemons-Palmer, '23+).
- No value in $(\frac{1}{3}, \frac{2}{5})$ (Balogh-Halfpap-Lidický-Palmer, '23+).

Positive co-degree density

F	$\leq \pi(F)$	$\pi(F) \leq$	$\leq \gamma(F)$	$\gamma(F) \leq$	$\leq \gamma^+(F)$	$\gamma^+(F) \leq$
K_4	5/9	0.5615	1/2	0.529	1/2	0.54296
K_4^-	2/7	0.28689	1/4	1/4	1/3	1/3
\mathbb{F}	3/4	3/4	1/2	1/2	2/3	2/3
F_5	2/9	2/9	0	0	1/3	1/3
F _{3,2}	4/9	4/9	1/3	1/3	1/2	1/2
J_4	1/2	0.50409	1/4	0.473	1/2	0.58
F _{3,3}	3/4	3/4	1/2	0.604	3/5	0.616
<i>C</i> ₅	$2\sqrt{3}-3$	0.46829	1/3	0.3993	1/2	1/2
C_5^-	1/4	0.25074	0	0.136	1/3	1/3

Positive co-degree density

F	$\leq \pi(F)$	$\pi(F) \leq$	$\leq \gamma(F)$	$\gamma(F) \leq$	$\leq \gamma^+(F)$	$\gamma^+(F) \leq$
K_4	5/9	0.5615	1/2	0.529	1/2	0.54296
K_4^-	2/7	0.28689	1/4	1/4	1/3	1/3
\mathbb{F}	3/4	3/4	1/2	1/2	2/3	2/3
F_5	2/9	2/9	0	0	1/3	1/3
F _{3,2}	4/9	4/9	1/3	1/3	1/2	1/2
J ₄	1/2	0.50409	1/4	0.473	1/2	0.58
F _{3,3}	3/4	3/4	1/2	0.604	3/5	0.616
<i>C</i> ₅	$2\sqrt{3}-3$	0.46829	1/3	0.3993	1/2	1/2
C_5^-	1/4	0.25074	0	0.136	1/3	1/3

	Turán $\pi(F)$	Co-degree $\gamma(F)$	Pos. co-degree $\gamma^+(F)$
Supersat.	✓	\checkmark	\checkmark
Stability	r = 2	K_4^-	K_4^-
Jumps	strange	dense in $[0,1]$	No $(0, \frac{1}{3}) \cup (\frac{1}{3}, \frac{2}{5})$

Positive co-degree density

F	$\leq \pi(F)$	$\pi(F) \leq$	$\leq \gamma(F)$	$\gamma(F) \leq$	$\leq \gamma^+(F)$	$\gamma^+(F) \leq$
K_4	5/9	0.5615	1/2	0.529	1/2	0.54296
K_4^-	2/7	0.28689	1/4	1/4	1/3	1/3
\mathbb{F}	3/4	3/4	1/2	1/2	2/3	2/3
F_5	2/9	2/9	0	0	1/3	1/3
F _{3,2}	4/9	4/9	1/3	1/3	1/2	1/2
J ₄	1/2	0.50409	1/4	0.473	1/2	0.58
F _{3,3}	3/4	3/4	1/2	0.604	3/5	0.616
<i>C</i> ₅	$2\sqrt{3}-3$	0.46829	1/3	0.3993	1/2	1/2
C_5^-	1/4	0.25074	0	0.136	1/3	1/3

	Turán $\pi(F)$	Co-degree $\gamma(F)$	Pos. co-degree $\gamma^+(F)$
Supersat.	✓	\checkmark	\checkmark
Stability	r = 2	K_4^-	K_4^-
Jumps	strange	dense in $[0,1]$	No $(0, \frac{1}{3}) \cup (\frac{1}{3}, \frac{2}{5})$

Thank you for your attention!