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Introduction

Fix a graph F . A graph G is called F -free if it does not contain F as a
subgraph.

Question: What is the maximum number of edges possible in an n-vertex
F -free graph G?

Turán theorem: for F a complete graph Kk we have

|E (G )| ≤
(
1− 1

k − 1

)
n2

2
.

Erdős-Stone-Simonovits theorem: for F a graph of chromatic number k
we have

|E (G )| ≤
(
1− 1

k − 1

)
n2

2
+ o(n2).
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Introduction

An r-graph H is simply a family of subsets of size r from a vertex set
V

= {1, 2, . . . , n}, i.e., H is an r -uniform hypergraph.

So a 2-graph is the usual notion of a graph. Triple systems are 3-graphs.

Let exr (n,F ) denote the maximum number of r -edges in an F -free
n-vertex r -graph.

• Turán Theorem: ex2(n,Kk) ∼
(
1− 1

k−1

) (n
2

)
.

• ESS Theorem: ex2(n,F ) =
(
1− 1

χ(F )−1

) (n
2

)
+ o(n2).

• Turán Tetrahedron Conjecture: ex3(n,K
3
4 ) ∼ 5

9

(n
3

)
.
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Turán density

The Turán density of r -graph F is

π(F ) := lim
n→∞

exr (n,F )(n
r

) .

π(F ) measures the proportion of edges possible without a copy of F .

Turán: π(Kk) = 1− 1

k − 1
. ESS: π(F ) = 1− 1

χ(F )− 1
.

Does the limit exist? Yes, the function exr (n,F )

(nr)
is monotone increasing and

bounded above by 1.
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Turán density

Proposition (Katona-Nemetz-Simonovits, 1964)

The function
exr (n,F )(n

r

) is monotone increasing in n.

Proof.

Suppose G is an n-vertex F -free r -graph with exr (n,F ) edges.

Double-count the non-incident edge-vertex pair (e, v).

Fix e, then v .

Fix v , then e.

Thus, (n − r) · exr (n,F ) ≤ n · exr (n − 1,F ).

Solving for ex(n,F ) and dividing both sides by
(n
r

)
gives

exr (n,F )(n
r

) ≤ n

n − r

exr (n − 1,F )(n
r

) =
exr (n − 1,F )(n−1

r

) .
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Turán density

F ≤ π(F ) π(F ) ≤

K 3
4 5/9 (Turán) 0.5615 (Baber)

K−
4 2/7 (Frankl-Füredi) 0.28689 (Vaughn)

F 3/4 (Sós) 3/4 (de Caen-Füredi)

J4 1/2 (Bollobás-Leader-Malvenuto) 0.50409 (Vaughn)
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Turán density

Theorem (Supersaturation)

Fix an r -graph F . For ε > 0, there exists δ > 0 such that if G is an
n-vertex r -graph with

|E (G )| > (π(F ) + ε)

(
n

r

)
,

then G contains δ
( n
|V (F )|

)
copies of F .

The idea behind the supersaturation theorem is that if we exceed the
extremal number of F by enough, then not only must there be a copy of
F , but there will be many.

7 / 20
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Turán density

Theorem (Stability)

Fix a 2-graph F . For ε > 0, there exists δ > 0 such that if G is an
n-vertex F -free 2-graph with

|E (G )| = (π(F )− ε)

(
n

2

)
,

then G can be transformed into a Turán graph by adding and removing at
most δn2 edges.

• Only for r = 2 as the “extremal graph” for F is essentially unique.

• There are many non-isomorphic “extremal 3-graphs” for K 3
4 , so a

stability theorem seems impossible.

• On the other hand, the extremal graph for the Fano plane F is unique
and has been shown to be stable.
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Turán density

Clearly, the Turán denstiy of a graph F is in the interval [0, 1], but what
values are possible?

For 2-graphs, the possible densities are 0, 12 ,
2
3 , . . . ,

k−1
k , . . . .

Theorem (Erdős Degeneracy Theorem)

An r -partite r -graph F has Turán number ex(n,F ) = o(nr ), i.e, π(F ) = 0.

This implies no density in the range (0, r !
r r ), e.g., for 3-graphs no value in(

0, 29
)
.

Erdős question: Is there a δ such that no 3-graph satisfies
π(F ) ∈

(
2
9 ,

2
9 + δ

)
? Does density 2

9 jump?
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Turán density

What densities jump for r -graphs?
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Co-degree density

Let H be an r -graph. The co-degree of an (r − 1)-set A is the number of
hyperedges of H containing A.

The minimum co-degree of H is denoted δr−1(H).

The co-degree Turán number coex(n,F ) is the maximum value of
δr−1(H) among all n-vertex F -free r -graphs H.
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Co-degree density

Define the co-degree density of r -graph F as

γ(F ) := lim
n→∞

coex(n,F )

n
.

This is the maximum possible minimum co-degree of an n-vertex F -free
r -graph normalized by n.

Does the limit exist? Yes, due to a nice probablistic argument of Mubayi
and Zhao.
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Co-degree density

F ≤ γ(F ) γ(F ) ≤

K 3
4 1/2 (Nagle-Czygrinow) 0.529 (Balogh-Clemens-Lidický)

K−
4 1/4 (Nagle) 1/4 (Falgas-Ravry-Pikhurko-Vaughan-Volec)

F 1/2 (Mubayi) 1/2 (Mubayi)

J4 1/4 (Balogh-Clemens-Lidický) 0.473 (Balogh-Clemens-Lidický)

13 / 20



Co-degree density

Construction of a K 3
4 -free 3-graph.

Consider a random tournament T on [n] where each pair i < j is
oriented as ij or ji with probability 1

2 .

A triple i < j < k becomes a 3-edge of H if ij and ki are arcs.

Claim: H is K 3
4 -free.

Claim: H has co-degree n
2 − o(n) with positive probability.

If we instead make a 3-edge if ij , jk and ki are arcs, then H will be
K−
4 -free with co-degree n

4 − o(n).
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Co-degree density

Supersaturation (Mubayi-Zhao): If δr−1(H) > (γ(F ) + ε) n, then H
contains δ

(n
r

)
copies of F .

Stability (Falgas-Ravry et al.): No general theorem, but, for example, all
near-extremal K−

4 -free configurations look like the random tournament
construction.

Jumps (Mubayi-Zhao): The values of γ(F ) are dense in [0, 1]. They
conjecture that all values in [0, 1] are possible.
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Positive co-degree density

Let H be an r -graph. The co-degree of an (r − 1)-set A is the number of
hyperedges of H containing A.

The minimum positive co-degree of H is denoted δ+r−1(H), i.e., the
maximum k such that for all (r − 1)-sets A, the co-degree of A is 0 or at
least k.

The positive co-degree Turán number co+ex(n,F ) is the maximum
value δ+r−1(H) among all n-vertex F -free r -graphs H.
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Positive co-degree density

Define the positive co-degree density of r -graph F as

γ(F ) := lim
n→∞

co+ex(n,F )

n
.

This is the maximum possible minimum positive co-degree of an n-vertex
F -free r -graph normalized by n.

Does the limit exist? Supersaturation? Yes, but you’ll have to wait for the
next talk!
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Positive co-degree density

F ≤ γ+(F ) γ+(F ) ≤

K 3
4 1/2 (Halfpap-Palmer-Lemons) 0.54296 (Volec)

K−
4 1/3 (Halfpap-Palmer-Lemons) 1/3 (Halfpap-Palmer-Lemons)

F 2/3 (Halfpap-Palmer-Lemons) 2/3 (Halfpap-Palmer-Lemons)

J4 1/2 (Halfpap-Palmer-Lemons) 0.58 (Balogh-Lidický)
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Positive co-degree density

Stability:

No general theorem, but cool examples.

• There are exactly two “extremal 3-graphs” for co+ex(n,K−
4 ).

• A K−
4 -free 3-graph with positive co-degree nearly co+ex(n,K−

4 ) looks
like one of the two extremal 3-graphs (Halfpap, ’23+).

Jumps: Still open in general.

• No value of γ+(F ) in (0, 13) (Halfpap-Lemons-Palmer, ’23+).

• No value in (13 ,
2
5) (Balogh-Halfpap-Lidický-Palmer, ’23+).
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19 / 20



Positive co-degree density

Stability: No general theorem, but cool examples.

• There are exactly two “extremal 3-graphs” for co+ex(n,K−
4 ).

• A K−
4 -free 3-graph with positive co-degree nearly co+ex(n,K−

4 ) looks
like one of the two extremal 3-graphs (Halfpap, ’23+).

Jumps: Still open in general.

• No value of γ+(F ) in (0, 13) (Halfpap-Lemons-Palmer, ’23+).

• No value in (13 ,
2
5) (Balogh-Halfpap-Lidický-Palmer, ’23+).
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Positive co-degree density

F ≤ π(F ) π(F ) ≤ ≤ γ(F ) γ(F ) ≤ ≤ γ+(F ) γ+(F ) ≤
K4 5/9 0.5615 1/2 0.529 1/2 0.54296
K−
4 2/7 0.28689 1/4 1/4 1/3 1/3

F 3/4 3/4 1/2 1/2 2/3 2/3
F5 2/9 2/9 0 0 1/3 1/3
F3,2 4/9 4/9 1/3 1/3 1/2 1/2
J4 1/2 0.50409 1/4 0.473 1/2 0.58
F3,3 3/4 3/4 1/2 0.604 3/5 0.616

C5 2
√
3− 3 0.46829 1/3 0.3993 1/2 1/2

C−
5 1/4 0.25074 0 0.136 1/3 1/3

Turán π(F ) Co-degree γ(F ) Pos. co-degree γ+(F )

Supersat.
Stability r = 2 K−

4 K−
4

Jumps strange dense in [0, 1] No (0, 13) ∪ (13 ,
2
5)

Thank you for your attention!
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