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13.3  Sparcity of exceptional zeros| . . . . . ... ..o Lo 31
Abstract: The zero-free regions for the Riemann zeta function uses bounds for zeta at large enough
heights. This is not feasible when we look at the case of other Dirichlet L-functions or Dedekind
zeta functions. Instead, we must consider the existence of low-lying zeros, real ones, and even of
an exceptional one close to 1. In this lecture, we will assume the audience to be familiar with
classical proof for zero-free regions for zeta, and will focus on the techniques to establish regions
close to the real line with at most one (or even a finite number of) zero(s).

For the sake of improving these notes, please do not hesitate to ask for clarification, or to point out
any typo or factual error.



1 Introduction

Theorem 1. Let L(s, x) be a Dirichlet character modulo q. Then there exists R > 0 such
that L(s, x) is non-vanishing in the region s = o + it where

o>1- and |t <1

with the exception of at most one simple zero in the case y is a quadratic character.

Here we will prove Theorem (1| for R = 35 generalizing de la Vallée Poussin’s method for the
Riemann zeta function.

Riemann zeta function:

e Numerical verification of RH/GRH:
Zeta for |¢| < 3 - 10'2: Platt, Trudgian [PT21]] (2021),
Dirichlet L-functions for g < 400000 and |¢| < %: Platt [Plal6] (2016).

e (Classic zero-free region for Riemann zeta function:
There exists a constant R > 0 s.t. {(o + it) does not vanish in

and |7 > 2.
Rlog |t

by de la Vallée Poussin (1899).
— Stechkin [Ste70] (1970) and Rosser and Schoenfeld [RS75] (1975): R = 9.65 (used
"Stechkin’s trick").
— Kondratev [Ke77]] (1977) R = 9.55 (used a degree 8 trigonometric polynomial).
— Ford [For02bl] (2002): R = 8.43 (consequence of Korobov-Vinogradov)
Kadiri [Kad05] (2005): R = 5.71 (smoothed {-function, Stechkin’s trick)
Jang and Kwon [JK14]] (2014): R = 5.69 (partial numerical verification of RH)

Mossinghoff and Trudgian [MT15] (2015): R = 5.58 (degree 16 trigonometric polyno-
mial).

Mossinghoff, Trudgian and Yang [MTY23] (2022): R = 5.56 (consequence of Korobov-
Vinogradov).

Best region for 3 - 10'? < |t| < 2084,

e Littlewood’s zero-free region for Riemann zeta function:

— Littlewood (1922): : existence of constant ¢ > 0 s.t. {(o + it) does not vanish in |f] > 3

and
_ (loglog|3sl)

Rsz1 c(log|Js))



(needs sub-convexity bounds: (o + it) < tﬁ (log t) with k > 4).
— Yang [Yan23| (Arxiv January 2023): ¢ = 21.44.
Best region for *%4 < |t] < 11174,

e Korobov-Vinogradov zero-free region for Riemann zeta function:

— Korobov-Vinogradov (1958): : existence of constant r > 0 s.t. {(o +it) does not vanish

in |f] > 3 and
1

> 1 ogi)™(log log )7
(needs sub-convexity bounds: (o + if) < Alf|P-" for 1/2 < o < 1)
— Ford [For02al] (2002, cor. 2022); r = 57.54
— Mossinghoft, Trudgian and Yang [MTY23] (2022): r = 55.241.

— Bellotti [[Bel23]] (Arxiv June 2023): r = 54.004.
Best region for |t| > e 174,

e A main difference between L-functions and {(s): its first zero occurs at Jp ~ 14.1347. On
the other hand, Dirichlet L-functions can vanish as low as the real line. From the Generalized
Riemann Hypothesis, it is expected that Dirichlet L-functions L(s, y) do not vanish on % <
Rs < 1. Ttis actually also expected that L(s, y) does not vanish at s = % (Chowla’s conjecture
for quadratic characters) For more on the topic, see Conrey and Soundararajan’s Real zeros
of quadratic Dirichlet L-functions [?], Conrey, Iwaniec, Sound [CIS13], etc.

Dirichlet L-functions
e History of explicit versions of Theorem [I}

— McCurley [McC84| proved R = 9.65 for Dirichlet L-functions, generalizing work of
Stechkin (1970) [Ste70] and Rosser and Schoenfeld (1975)[RS75] about £(s).
— I proved R = 5.70 in (Ph.D. thesis [Kad02], 2002).

e Assuming q is large enough, admissible values for R down to 2.88 (Heath-Brown, 1992)
[HB92]), 2.75 (Liu and Wang, 1998) and then 2.28 (Xylouris, 2011).

e Korobov-Vinogradov zero-free region for Dirichlet L-functions and others:
For all ¢ > 3 and y mod g, the Dirichlet L-function L(o + it, x) does not vanish in the region

1
105 log g + 61.5(log |t))*3(log log |t])/3°

o>1 lf| > 10,

(Khale [Kha22], Arxiv October 2022)
See Coleman A zero-free region for the Hecke L-function (1990).

Application to primes in arithmetic progression



e Explicit bounds for primes in arithmetic progressions by Bennett, Martin, O’Bryant, Rech-
nitzer [BMORI18]] (2018)
Let g > 10°. Then for all x > exp(4R(log ¢)?)

V54 @) = DN L2 gy g 457 JJO8X exp[ - (108
x/¢(q) = #(q) ' R R )

where (3, term is present only if some Dirichlet L-function (modg) has an exceptional zero
Bo, R constant from zero-free region for Dirichlet L-functions: the smaller R, the sharper the
bound for ¥(x; g, a).

e Linnik’s theorem (1944):
There exists an absolute constant A > 0, s.t. for any arithmetic progression @ mod ¢, there
exists a prime p = a mod g with
P(a,q) < q".
For g sufficiently large: A = 5.5 by Heath-Brown [HB92[] Zero-free regions for Dirichlet L-
functions and the least prime in an arithmetic progression (1992)
A = 5.2 (Xylouris [Xyl11], 2009 )
For all moduli ¢: P(a, q) < eq’1°¢? (Kadiri, 2008).

e Languasco and Zaccagnini [LZ07] (2007) A note on Mertens’ formula for arithmetic pro-
gressions

Dedekind /-functions

e (;(s) vanishes at most at the “exceptional zero" g, in the region

Rs>1-

d|Js| < ,
clog Lan 19+ clogd;

For d; is sufficiently large: Stark [Sta74] (1974) ¢ = 4.

For all L # Q: Ahn and Kwon [AK19] (2019) ¢ = 2, Kadiri and Wong [KW22] (2021)
c=1.7.

e [/ (s) vanishes at most at the “exceptional zero" oy in the region

Rs>1-

d |Js| < 1.
rlogd; and [Js] <

For d; is sufficiently large: Kadiri [Kad12] (2012) r = 12.8, Lee [Lee21] (2021) r = 12.5.
For all L # Q: Ahn and Kwon [[AK19] (2019) r = 29.6.

e [;(s) does not vanish in

[
Cq log d; + cong lOg |SS| + c3ng, + C4.
For d; is sufficiently large: Kadiri [Kad12] (2012) ¢; = 12.6,¢, = 9.7,¢3 = 3.1,¢4 = 58.7,
and Lee [Lee2ll] (2021) ¢; = 12.3,¢, =9.6,¢3 = 0.1, ¢4 = 2.3.

The case [f| < 1 is important inexplicit bounds for 7(x;¢g,a) and also in the proof of Linnik’s
theorem.

Rs>1-




2 Explicit Inequalities

A so-called explicit inequality essentially relates an L-function (more specifically the primes asso-
ciated to it) with the pole(s) and zeros of this L-function.

2.1 Notation

Let g > 3, y is a character modulo ¢, and y’ the primitive character modulo ¢’ inducing y. We
recall ¢ | g. We assume o > 1 and propose to express —%(s) and —Lf'(s, ) in terms of its
singularities (i.e. poles and zeros of £(s) and L(s, x)). We denote y, the principal character modulo

q: x"(n) = xo(n) = 1if (n,q) = 1 and x°(n) = xo(n) = 0if (n,q) > 1.

2.2 A ''global" formula

From Davenport [Dav00, Chapter 12, Equations (8) and (17)], we have the explicit identities for
the logarithmic derivative of the zeta and the Dirichlet L-function L(s, ), where y is a primitive
character modulo g:

' 11 1T (5+2 11
= g i (5E2) g dl—=—=+-) (1
14 s—1 2 2T 2 s—0 ©
{(@=0
U 1 1T (s+a 11
~Z(0 = slogh + 2= (50) - Boo - Y +-), @)
L 2 % 2T\ 2 Wo\s—o o

where the sums are over the non-trivial zeros of respectively {(s) and L(s, y), and where

0 ify(—1)=1,(y is even),
a=31 if y(=1) =-1,(y is odd), 3)
2 if y is principal).

Here, recall that

RE=-R Y L andRBo=-R Y L. @)

£@)=0 Liom=09
So by taking the real parts and using (4)), we have

J 1 1 1, I"(s+2 1
= %Z(S) = %(m) — Elogﬂ + E%F (S )— Z %( ), ®)

and — %Lz’(s,)() = %log(%) + %%% (S il a) - Z 9%(

). (6)

Remark 1. Both sums over the zeros are non-negative for o > 1 > Ro (for any zero o).



2.3 Stechkin explicit inequalities

Adopting McCurley [McC84]’s notation: Consider the difference

L L
f(t’/\/) = f(t’)(’ O-) = _% Z(s + itaX) - KZ(SI + lt’X)) ’ (7)

where s = o +it, with 1 <o < 1.15,¢ >0, and s, = 0y + it and « are given by

1 1
0'1:§+§ V1+40'2, (8)
1
k= — =~ 0.4472. 9)
V5
In addition we define |
1 1T e
K = = ~ U. .
2 2
Now the sum over the zeros is of the shape
%( 1« )’
§—0 $1—-0

Stechkin’s Lemma [Ste70]] insures that for s, and « chosen above, this remains non-negative:

Lemma?2. Leto > 1,0 = %+ V1 + 402, s = o+it, s; = o +it. Then, forall 0 < Rz < 1,

1
2

1 1 1 1
R + - |- kR + —|>0.
s—z s—-1+7% s1—z s1—-1+72




2.4 Bounding the I'-terms:
We recall Stirling formulas (see [Dav00, Chapter 10]): for any € > 0,
1
logT(@) = (z = 5)logz — 2 + log V2 + 03z ™)

forall |zl > 1 and |argz| <7 —€.
In addition, (by using a Cauchy’s integral formula for rF'(z) = a% logI'(z)), we have

I’ 1

—(2) =logz — — -2y, 1

=(2) = logz = 5=+ O(k) (10)
The following bound (see [?, Equation (4) page 113]) gives an explicit version of (10).

Lemma3. Letz=x+itwithx>0andt # 0. Then

I’ 1 1
—(z) =logz + % + O* (4t2)

Note that, for o > 1, |t| < 4,

’

%w+m=mu

which the following makes explicit:

Problem 1. Using

%(s) log(s)+—' lfm dx (an
0

12ISZI (o + x)? + 2)3

prove that, for | <o < 1.15and |t| <4, a=0,1,2, then

‘?& S;a)‘sz.

Solution The following bound (see [?, Equation (4) page 113]) give an explicit version of

(T0).

1 a dx
~log(s) + —| < f (12)
: ' 12|52| 0 (0 +x)?+72):
Let s = o +itwith|t| < 1. Then
1

_1 I — = — 1 + 13

(S) 0E(s) ‘ = 1202 (0' + x)3 1202 ( )2 (“ D = gz 1
Replacing s by 5* this becomes

s +a s+a 1 2
-1 + < ) 14
‘]" ) Og( 2 ) 2(%) T 30+ a)z (14)




It follows that

r 1 2
%T{s;a%:%k%(s;ay+o(a+a+3ar+@ﬁ

o+a 1 2
\ J* et 3o v o?)
. Y|+ o L 2
—5 ‘+O(O-+a+3(0'+a)2)
_L * 1 .
5 +4‘+O o—+a+3(0'+a)2).
Let 1 O+ a\2 1 2
8a(0) 1= Eln'( ) +4' cta 3(0 + a)?

We conclude by verifying this is < 3 under our conditions.

We have that [McC84) Lemma 1] and [McC84) Lemma 2] give bounds for

_QQ (F_I(ﬂ) _ KE(Sl + a))

2 r— 2
for |f| < 1 and |¢| > 1 respectively.

Lemmad. Letl <o <115, |t|<1,1<k<4, a=0,1,0r2, s =0 +iktand s; = o + ikt.

We recall 1

1 1-3
— ~ 04472, K = ~ 0.2764.
V5 2

K =

Then

I s+a I’ s1+a) < K loglt| + c(a, k) if |t| > 1,
2 r— 2

—‘R (2
() gl A, k) if | < 1.
Admissible values for c(a, k) and d(a, k) are given in the table:

Table 1: Values for c(a, k)
m|a=0orl| a=2
0.3918 | 0.3316
0.3915 | 0.3530
0.4062 | 0.3780
0.4266 | 0.4080

AW N~

Table 2: Values for d(a, k)



a=0orl| a=2
—-0.0390 | 0.0615
0.2469 | 0.1565
0.4452 | 0.2638
0.5842 | 0.3636

AW =3

Problem 2. Let 1 < 0 < 1.15,0 <t < 1, and x a primitive character modulo q. Prove the
explicit formulas:

L L
— ‘Rf(s + it, xo) + K‘Rz(sl + it, xo) < 5 +d(2,1) — ' logm + so(q), (15)

o-1
(c=1)2+¢
L, . L, . /7 /
- ‘Rf(s +it,x) + K‘Rz(sl +it,x) <« logg +d(1,1) — k' logm, (16)

with ¥ ~ 0.2764.

10




2.5 A "local" formula

In [HB92, Lemma 3.1.], Heath-Brown proves a Jensen type formula relating L-function to its
singularities inside a small disc around a point to close to the vertical 1-line. The sub-convexity
bound used for L(s, y) is proven from some Burgess bounds for character sums (see [HB92, Lemma
2.5.]):

For any integer k > 3 and any € > 0

. _ 1
L(o + it) <ep "ML 4+ 1)

) log|
uniformly for I — 3 <o < 1 + =2284,

) ogq
Here ¢ is a constant defined as

.

Lemma 5. Let y be a non-principal character modulo q and let ¢ be defined as in (I7).
Then for every € > 0, there exists a 6 = 6(€) such that

if g is cube-free or the order of y is at most logg, (17
otherwise.

W= =

r 1
REep - Y R+ G+ a0opa)

|1+it—p|<6

uniformly for 1 +
large.

1 loglogg 5 718 :
Tozgiogiozg =7 = 1+ oo and |t| < log g, providing that q sufficiently

Here ¢ = % =0.125 or é ~ 0.167.

Remark 2. The the factor of log g directly determines the size of the zero-free region (smaller
factor gives larger region). To date there is no version of Heath-Brown’s explicit formula valid for
all g > 3 (and thus zero-free region).

11



2.6 Handling the principal and non primitive characters
2.6.1 From L(s, yo) to {(s)

If xo is the principal character modulo ¢, then

Lemma 6. Let o > 1.

Ll !
‘Rz(s + it, x0) — sR%(O' +it)| < so(q) (18)
where sy(q) is defined (as in [McC84, page 10]):
lo
solg) = 3. —= P (19)
p°—1
plg
Problem 3. Prove
2(loglogg +1) ifo=>1,
SO S R | (20)
»—(logq) if3/4<o<l1.
Solution Consider the sum 1
0
plq p
where o > 0. Let 2 < x < q be a parameter. Note that
lo lo
To)=y —=2L 4 5 EL
plg p plg p
p<x p>x
Observe that 1 1 ]
Z Oggp < —UZlogpS =24
plq p . plq
p>x p>x
and thus i !
To)< Y —=£ 4 24 Q1)
P pO’ X

Let us split in two cases.
Case 1. o = 1. In this case we recall a result of Rosser and Schoenfeld [?]

1
Zﬂﬁlogxifx>l.

p<x

It follows that
1
T(1)<logx+ el
X

and choosing x = logq

T(1)<loglogg+ 1.

12



Case 2. 0 < o < 1. In this case we recall a result of Broadbent et al. [BKL*21]
Hx) < coxifx>1

where
co=1+1.93378-107%.

Here we apply partial summation to obtain
lo Hx T ot
S 10 [0,
p<x p X % 4
Co ot
< — 4+ coo f dt
X % t0'+1

X
= cox' 77 + CoO‘f 7 dt
3

p

Co0 |_
tl o

= cox'™7 +

X
1-0 3

-0

It follows from (21)) that

Co l-o log q
X + —.

-0 x7

T(o) <

Setting x = log q yields
€o

T(o) < (1 +1)(logg)' ™.

-0

With o = %, it follows that
T(3) < (4co + D(logg)' ™7 < 6(log g)' .

Thus we obtain

Z log p < {loglogq+ lifo=1,
pO’

e 6(logg)' " if0 <o < 1.

(22)

13




2.6.2 From imprimitive to primitive character

Lemma 7. Let x’ the primitive character inducing y modulo q'. Let % <o <2,|t§<1. Then

I v ,
'zm) - )] < sola/d). 23)
For the proof, note that

Lis,0) = Lis.x) [ [ =x'(op™)

plg

valid for all s which implies

x'(p)log p
(s X) = —(s xX)+
pzlq: -x'(p)

14



o . L . L .
2.7 Explicit bounds for —R 7 (o + it, xo) and —R (0 + it, x)
Note that taking o~ > 1 makes the sum over the zeros o = 8 + iy non-negative:

o-p

1 .
%(S—Q)Z(O'—,B)2+(t—y)220 since o > 1 > . (24)

Explicit formulas as produced in the previous chapter establish that for o > 1 and |¢| < 1 give

- ng(U +it) = ‘R; + 0(1), —‘Ré—/(ff) =
4 o

+it— 1 ¢ o1 o (%9)

Leto >1,0<t<loggqg. Let g > 3 and x| the principal character modulo g. Then

+ o(log q). (26)

L . 1
= %Z(O' + ll,XO) < %(m)

In addition, if y is a non-principal character modulo ¢, then

o-p
(=B + -y

L , A
- %Z(O' +it, ) < 2 logq - Z > +o(log g), (27)

0€ZA(x)

where Z4(x) is the set of all the non-trivial zeros o = 8 + iy of L(s, x) satisfying

0<p<l1 if A/2 = 0.5 (for all g),
0<p<l1 if A/2 = «’/2 = 0.27 (Stechkin, for all g),
1 +it—o0| <06, ifA/2=(¢/2+ €)<0.25 (Heath-Brown, for ¢ sufficiently large).

(28)

15



2.8 Introducing non-negative trigonometric polynomials

Zero-free regions proofs all rely on the use of a non-negative cosine polynomial:

m

P@O) = Z ay cos(k@) > 0 with all coefficients a; > 0. 29)
k=0

For instance the trigonometric polynomial
P(6) = 3 + 4 cos 6 + cos(20) = 2(1 + cos 6)* 30)

origins in the work of de la Valée Poussin [dIVP99] for zeta and can be used to more general
L-functions.

Lemma 8. Let y be a Dirichlet characters modulo q and let s = o + it with o > 1. Then

apR (_LZ(O- + iky,/\/o)) + Z aR (_Lf(o- + iky,)(k)) > 0. (31)

k=1

In particular, for the polynomial as defined in (30), we have

3R (—%(0’,){0)) + 4R (—%(O’ + it,)()) +R (—%(0‘ + 2it,)(2)) > 0. (32)

Problem 4. Prove Lemma
Prove McCurley’s version:

anf(0,x0) + ) axflly,x*) > 0, (33)
k=1
where we denote

f(tv\/) = _% (LI,(S + lt’X) - KLZ,(SI + lt’/\/))

Hints: Replace 0 with arg (’%) Note 1 — == > 0.

16



2.9 Examples

Here are some of the polynomials used

Author Non-negative trigonometric polynomial P(6) | Coefficients
. ap =3
Riemann zeta £(s) 5 _
de la Vallée Poussin 2(1 + cos 6) Zl - 411
2 =

Dirichlet L-functions

8(0.9126 + cos 6)%(0.2766 + cos 6)>

ap = 11.1859355312082048
a; = 19.073344004352
a, =11.67618784

Riemann zeta (s)
Mossinghof-Trudgian

c1 = —2.09100370089199
c; =0.414661861733616
c3 = 4.94973437766435
¢4 = 2.26052224951171
cs = 8.58599241204357
c6 = 6.87053689828658
c7 = 22.6412990090005
cg = 6.76222005424994
c9 = 50.2233943767588
c1o = 8.07550113395201
c11 =223.771572768515
ci2 = 487.278135806977
c13 = 597.268928658734
c14 = 473.937203439807
c15 = 237.271715181426
c16 = 59.6961898512813

McCurley (1984) a 4.7568
3 =4
as =1
co=1 ap =1

ar = 1.74126664022806

ar = 1.128282822804652

az = 0.5065272432186642

as = 0.1253566902628852

as = 9.35696526707405 - 1013
ag = 4.546614790384321 - 1013
a7 = 0.01201214561729989

ag = 0.006875849760911001

ay = 7.77030543093611 - 102
aip = 2.846662294985367 - 1077
a1 = 0.001608306592372963
an = 0.001017994683287104
a3 = 2.838909054508971 - 1077
as = 5.482482041999887 - 107°
a5 = 2.412958794855076 - 104
aie = 1.281001290654868 - 10~

0 A\ 2
In the last example, P(6) = (Z,ﬁo ckel"‘)) = .5, a cos(kb).

17




2.10 A smoothing argument

Consider a “smoothed version” of —‘R%(s, X):

Am)x(n)f(logn) (1 - &)

R - : (34)

n>1

We establish a version of explicit formula of the form

Alm)x(n)fogn) (1 —=5) (1 -
R ;_1 p ( ) - K)f(()) log(61|5s|)—g;w R (F(s — 0) = E(s + 6 — 0)+E,(s),

(35)

where F is the Laplace transform of f, y is non-principal, Z(y) is the set of non-trivial zeros of
L(s, x), and E,(s) is an error term.

In addition, when y is principal, the term agR F(s — 1) arises for k = 0 from the pole of Z(s) at
s=1.

To compare with the classical proof, k and § would each be 0, f would be identically 1, RF(s— 1)
would be g, and — ¥ ) %ﬁ would be the sum over the zeros. We compare (34) for various
values of s on a vertical line passing near gy by means of a trigonometric inequality of the form

no

P@t) = Zak cos(kt) > 0 with @, >0 forall k=0,...,n.

k=0
We deduce
Am)f(ogn) (1 —5) &
Z ~ ( 6) Zak cos (karg ()@)) > 0.
n>1 n k=0 n
It remains to give accurate upper bounds to the right hand side of (35)) for s = o +iko, k = 0, ..., n.
1 -« S
Tf(O)log(q)Zak—alF(O'—,BO)+aOF(0'—1)+620, (36)
k=1

where € is an error term. We choose f to depend on 3 by setting f(0) = h(0)(1 —fB,), where h(0) is

independent of g and 4 is a smooth function chosen appropriately. We also choose the polynomial

coeflicients a;, and the parameter o~. Then the inequality

aF(o—pBy)—aF(c—1)—€
SER0) 30 ax

provides a formula where the zero-free constant R™! is given by the right term.

This replaces the classical proof’s conclusion

(1 =pBo)log(g) = (37)

4 _ 4o
o—fo o-1

1 - Byl > '
(1 - o) log(g) LA +o())ar + ... +ay)

Advantage of smoothing method: one can take o = 1 (even o < 1).

18



3 Zero-free region for L(s,y) when 0 <y < 1

Let g > 3 and y a primitive character modulo g. Then there is at most one zero of L(s, ) in
the region

1
Rs>1- and |Js| < 1,
Rlogqg

This zero if it exists is real and arises from a real character.
The goal of this section is to prove this theorem with R = 35.

Let g > 3. Assume y is a primitive character modulo ¢ and consider oy be a non-trivial zero of

L(s, x):
Q0:ﬁ0+i’)/0 with 1/2Sﬂo<1 and OS’}/()<1

Note that we can assume 7y, > 0, as the zeros of L(s, y) with v, < 0 are the complex conjugates

of the zeros of L(s, y) with vy > 0, since L(s, y) = L(s, x). We also introduce the parameter o and
consider the following points just on the right of the vertical 1-line:

o +ikyy with o>1 and k=0,1,...,m.

Remark 3. Note that for k = 1, o + iy is close to the zero 0y = By + iyp.
We present here the classical proof using the explicit formulas and with AJ2 = 1/2:

Ll
- ‘RZ(O' +it, xo) < ‘R( ) + o(log q).

o-p
(=B +@-v

o+it—1

L 1
- %Z(O' +it,x) < 5 logq — 5 +o(log g),

L(ox)=0

To estimate the sum over the zeros — Y ,ez, () % we isolate the largest terms, ie when o + it
is the closest to a zero of L(s, x) and bound the others by 0.

19



3.1 WhenO <vy < 1 and y complex
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We fix s = o + iyp with o > 1. We recall bounds (26) and(27). In addition, for k = 1, we
isolate the zero o = gy in the sum over the zeros, and use that the rest of the sum is non-negative:

o - 1 oc-p
- 2 - Brr—yr = o-p 2, c-prrt—yp ="

We recall that here y, is the primitive character associated to y*> modulo ¢, | g (so log g, < log q).
Thus

Ll
- ‘Rz(o:)(o) < + o(log q). (38)
o-1
L 1
—R—(0 +iyo,x) < = logg - + o(log q), (39)
L 2 o —Bo
L 1
- %Z(a + 2iy0, x%) < 3 log g + o(log g), (40)

Together with Lemma [8}
L L’ L’
3 (—Z(O',)(o)) +4 (—Z(O' + it,)()) + (—Z(O' + 2it,)(2)) >0,
we obtain

4 4+1
3 L@+

o—-1 o-p 2

logg + o(logg) > 0 41)

Taking (o — 1) = x(1 — SBy), we have

3 4 5
; - (x+1) + 5(1 —Bo)log g + o((1 — By) logg) > 0,
i.e. . ) 5
x (x+1) * (5 + 0(1))(1 —Bo)logg) =0
i.e.
4 _3
- (x+1) X
(1 = Bo)logg) = o)

Problem 5. Prove that an optimal choice for x is x = 3 + 2 V3 and deduce the zero free
region for L(s, x):
1 ) 1 1

1 -Bo)loggq > h ~
(1-po)logg ARG + o) wit (T+4v3): 3482

21



)

Remark 4. Note the role of the trigonometric polynomial: R is obtained by optimizing ——, or

x+1 x
more generally
2
S ]

x+1
So in addition to the conditions of positivity on the coefficients a, and on the trigonometric poly-
nomial, we add that a; + a; + . .. + a,, is as small as possible while a, > ay.

Remark S. This achieves the proof that for any q > 3, and any complex primitive Dirichlet
character y modulo q, L(s, x) has no zero in the region

B>

1- d0< 1.
3510gqan =YY<

22



3.2 WhenO <y < 1and y real
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In this case x is the principal character modulo g, so the associated primitive character is the
trivial character. In this case, an extra pole contribution appears from x>, so we have

L 1
- R—(0,x0) < + o(log @), (42)
L o-1
L 1
- %Z(O' + 00, X) < 5 logq - Py + o(log q), 43)
r -
— R—(0 +2iyp, x*) < —————— + ol 44
7 (@ +2iv0.7) -1+ 472 o(logg) (44)
Together with Lemma 8] we obtain
3 o-1 4 4
+ - + = logg + o(logg) > 0. 45
In this case, the bound for y, > 0 gives that (45) becomes
3 (c-1) 4
+ - +21 + o(l >0, 46
ie
4 4
+2logq + o(logg) > 0, (47)

o—1 (-D+1-p)
Note that this becomes a trivial inequality as for o — 1 = x(1 — By), it leads to

4

- - +2(1 = Bo)(og g) + o(log g)(1 = By) > 0, (48)
x (x+1)
2 _2
1 =By >l x 49
(1= pologg) 2 =2 (49)
where 5 5
--<0.
x+1 x
This makes the previous proof fail.
Note that as vy, gets closer to zero, the pole contribution m gets close to (ﬁ, which is
0

problematic. So, we first split the cases depending on the size of y, in comparison to @.

24



3.2.1 When (1 —By) <y <1 and y real
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We assume c(1 — ) <y < 1 for some positive constant c¢. Here c is an extra parameter which

we will choose later. [
In this case we replace (@#5)) with

S + o1 +4l +o(logg) > 0
- —1lo o(logg) > 0,
c—1 0-12+42(0 B o-B 2 &9 =

We choose o — 1 = x(1 — ), so that

3 x(1~ ) 4
X —Bo) A —Pop w40 —f e D1 —f + 1+ oDloea =0,

SO

3 4
S maE e 20 e~ fo)llogg) 20,
ie ) ;
X
(1 +o(M)(1 = Bo)loggq) = GrD 2 2(2+ad)
e
2 _ 3 ___x
(x+1) 2x 2(x2+4¢?)
(1= o)logg) = T2

2 3

(50)

61y

(52)

(53)

(54)

For ¢ = 17, we find an optimal value at x = 6.2271 , for which D " a5 T m ~ 30.07, so

1
(1 =Bo)logq) = 35——75-

I'This assumption is to simplify the exposition. The same argument can be made with comparing y with

26
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3.22 WhenO <y <c(l-p) and y real
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One can counter this by noticing that both o and 1 — o are zeros of L(s, x) since y is real. Thus

we have both terms (U_gﬁ(’% and oo B;T)Z_+?—yo)2 appearing. Both are bounded above with %ﬁo We
use the parameter o in place of o + iy,. We have the bounds
L 1
~ R0 x0) € = +olog ), (55)
L 1 a —fo 1 2(o - o)
- R—(o,x) < zlogg—-2— +o(lo < -logqg - + o(log q),
7 (o) < Slogg @ —foP + 7 ologg) < 5 logq o B+ 0 =B o(log g)
(56)
- R—(o.x) < +o(log q) (57)
L o-1
Thus, in place of (50), we have
3+1 4% 2(o - o) 4
- + = + o(l > 0, 58
o—1 (@ —pof+ 1 —fo) 5(ogg) + o(logg) (58)
i.e. 1 8(x+ 1)
X+
-———+(2 D)(1 = Bo)d >0,
Y Grrr e + 2 +o(1) - Bo)logg) =

1.e.
4(x+1) 2

(I +o(1))(1 = Bo)logq) = GrD2+2 x

where the optimum value for ¢ = 17 is given by x ~ 35.4888, giving 2 — %31 ~ 29,6595,

(x+1)2+¢2

Remark 6. Note that one can just take (1 +cos8) > 0, i.e. —R %(0‘,)(0) — ‘R%(O’,)() > 0 as it gives

1 20x+ 1)

1
Pl P s + (5 +o(1)(1 = Bo)logg) = 0,

(the same equation as above).

Problem 6. Prove that a value for c of 17 (or close to it) gives a final value for R is as small
as possible for both cases yy > c(1 — By) and vy < c(1 — Bo).

Solution Note that the final R decreases in the first case, and decreases in the second, with
respect to c.

Remark 7. At this point we have proven regions free of zeros for complex characters, and free of
non-real zeros for real characters, with a constant < 35. Note that in this argument fails if there
is only one real zero, instead of 2 conjugate ones. This brings back the same issue as in Section

322

3.2.3 When y, = 0 and y real
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In this case, we consider two real zeros 3, of L(s, y), where y is a real character. This time, we
isolate both 8, and 3, and proceed in a similar argument to Section [3.2.2}

L 1
— ‘RZ(O',)(O) < + o(log q), (59)
o-1
%L,( )<1l ! ! +o(l )<11 2 + o(log q)
LX) T g T g, R S T e gy T
(60)
r o, 1
-R—(o,x) < + o(log q) (61)
L o-2

Thus, in place of (58), we have

4 8
oc—1 o —min(By,p,)

+(2 + o(1))(log q) > 0. (62)

giving for o — 1 = x(1 — min(B4, 32))
4

x (x+1

+ (2 + o(1))(1 — min(B,, 82))(log q) = O,

i.e. the largest zero falls in the same region described in Section [3.2.2}

1
p2) = 2.91(1 + o(1))(log q)°

1 — min(B,

Remark 8. This achieves the proof that for any real primitive Dirichlet character y modulo g,
L(s, x) has at most one real zero in the region

p=>1 and y = 0.

292 logg
We call the zeros outside this region ”exceptional”. The next section describes how rare those are:

e there is at most one exceptional zero per modulus,

e exceptional moduli are rare.

29



Problem 7.  I. Prove a zero free region using Stechkin’s device.

2. Prove a zero free region using this time the trigonometric polynomial
8(0.9126 + cos 6)*(0.2766 + cos 6)”.

Hint: we recall that

e when y is of order 2, then y is real,
e when y is of order 3, then x* = ¥, and

e when y is of order 4, then x* is real.
So, all these cases need a separate study.

3. Prove a zero free region using both.
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3.3 Sparcity of exceptional zeros

Theorem 9. Let q1,q, > 3. Let x1, x> be two distinct real primitive characters modulo q, and g,
respectively. Assume that L(s, 1) has an exceptional zero By, and that L(s, x») has an exceptional
zero 3. Then

1

min(B,5;) <1 — —.
rlog(qiq»)

Corollary 10. There is at most one real non-principal character y modulo q for which L(s, x) has
an exceptional real zero.

Corollary 11. If g, < g, are exceptional moduli, then g, > q%.

Proof. Since the product of the primitive characters yy» is non-principal, we denote x’ the primi-
tive character modulo ¢’ | (¢14>) inducing y1y». So both 8; and 3, are zeros of L(s, xy”). We use the
bounds

’ 1
- £(0) < —— +ollogg. (63)
4 o-1
- %E( ) < llo _ + o(log q) (64)
7 (X)) = 5108 g pay ollogqg
?%L/( ) < 110 ! + o(log q) (65)
7 \Tx2) = S108 g ay ollogg
L 1 1 1
—R—(ox) < =zlogq - - 1 66
7 (@x) = 5logg ) G_ﬁz+d0g@ (66)
and combine them thanks to the inequality
é// LI LI LI
—R=(0)-R—(x1)-R—(0, x2)-R—(o.x1x2) = R Z Am)T+x1(n)(1+x2(n)) 2 0. (67)
4 L L L —
Noting ¢’ < ¢, and _0'+ﬁ[ < —m, we deduce
1
+ (I +o(1))log(q142) 2 0. (68)

o-1 o- min(By, 5>)

Taking o — 1 = x(1 — min(B3;, 3,)), we obtain as in in Section [3.2.2]
1 4

x (x+1)

+ (1 = min(B,, 82))(1 + o(1)) (log(g142)) > O,

leading to
' 1
(y-mehﬁﬁXbﬂqmﬁ)z5555::;5}
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