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Motivation

Objective

Study large scale optimization problems that have permutation symmetries.

Exploiting symmetries allow taking limits of the size of optimization problems.

For n ∈ N, consider minimizing the following interaction energy Vn : Rn → R+

Vn(x) :=
1

n2

n∑
i,j=1

1

2
(xi − xj)

2 .

Starting from {Xi,0}ni=1

i.i.d.∼ ρ0, one can perform a gradient flow:

dXi,t = − 1

n

n∑
j=1

(Xi,t −Xj,t) dt , ∀ i ∈ [n], t ≥ 0 .

Notice that Vn is essentially a function of the empirical measure of its inputs!

Vn(x) = Var(Empn(x)) .

Can we approximate this problem by lifting it over the space of probability measures?
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Motivation Particle systems

Particle System to Measures

If a function Vn : Rn → R is invariant under permutations of its input,
then it can be extended to a function on its empirical measure, and perhaps to a
function V : P(R) → R.

For the interaction energy Vn, we know that V (ρ) = Var(ρ) for ρ ∈ P(R).
Notice that for all n ∈ N,

min
Rn

Vn = min
P(R)

Var .

One can solve the latter using Wasserstein gradient flows!

One may also add a noise term.

dXi,t = − 1

n

n∑
j=1

(Xi,t −Xj,t) +
√

2β dBi,t, ∀ i ∈ [n], t ≥ 0,

where Bt is the standard Brownian motion on Rn, and β ≥ 0.

This SDE captures the Wasserstein gradient flow of Var + βEnt: P(R) → R, the
entropy-regularized optimization.

Benefits

Approximations and universal limits.
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Motivation Large unlabeled Graphs

Optimization on Large Graphs

Q. What about optimization over dense unlabeled (weighted) graphs?

Triangle density

Let G be a finite simple graph with n vertices,

h△(G) =
Number of triangles in G

n3
.

For a graph with adjacency matrix A one can define

Number of triangles in G =
∑

ϕ : [3]→V (G)

∏
{i,j}∈E(G)

Aϕ(i),ϕ(j) .

The above formula works even when A is a symmetric matrix of real edge weights.
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Motivation Large unlabeled Graphs

Optimization on Large Graphs

Scalar Entropy

For a graph G with adjacency matrix A, let h(p) = p log p+ (1− p) log(1− p),

E(G) =
1

n2

n∑
i,j=1

h(Ai,j) .

Scalar Entropy is 0 for all unweighted graphs.

A Problem on Statistics of Exponential Random Graphs

Consider minimizing h△ + E over the set of all graphs.

See Diaconis and Janson 2008, Chatterjee & Varadhan 2011, Lovász 2012, Lubetzky
and Zhao 2015 etc.
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Motivation Large unlabeled Graphs

Is there a symmetry?

Notice that unlabeled graphs have a symmetry under vertex relabeling.

≡

1

2

3

4 ≡

3

2

4

1

Figure: Symmetry in unlabeled graphs.

I.e., for an unlabeled graph G with n vertices.
If A is its adjacency matrix, so is Aπ =

(
Aπ(i),π(j)

)
i,j
.

A =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 ≡


0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0

 = Aπ .

This makes these graphs exchangeable under this symmetry. See Aldous ’81, ’82,
and Austin ’08, ’12.
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Motivation Large unlabeled Graphs

Neural Networks: Another Example

ŷ(x0)

x0

x1

d

n

Figure: NN problem is optimization over unlabeled networks.

ŷ(x0) =
1

n

d∑
i=1

σ(Ai,jx0,j) , A ∈ Rn×d , Rn(A) := E(X,Y )∼µ[ℓ(Y, ŷ(X))] .

A Mean Field View of the Landscape of Two-Layer Neural Networks - Mei, Montanari &
Nguyen, 2018

On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal
Transport - Chizat & Bach, 2018
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Motivation Broad plan

What we need?

A common embedding that contains all unlabeled graphs

A suitable topology of ‘graph convergence’

Completion under a metric

A notion of ‘differentiable structure’ to define ‘gradient flow’ on this space.
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Preparation/Preliminaries Embedding

Kernels and Graphons

Kernels W

A kernel is a measurable function W : [0, 1]2 → [−1, 1] such that W (x, y) = W (y, x).

Symmetric matrices can be converted into a kernel.

1

16


−16 −15 −12 −7
−15 −14 −11 1
−12 −11 −6 4
−7 1 4 9



Symmetric matrix A

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

x

y

−1

−0.5

0

0.5

1

Kernel representation of A

(Weighted) Graphs ⇔ adjacency matrix ⇔ kernel.

Figure: Example 4.1.6, Graph Theory and Additive Combinatorics, Zhao
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Preparation/Preliminaries Embedding

Graphons

Identify two kernels if one can be obtained by ‘permuting’ the other.

W1
∼= W2 if there is a measure preserving transform φ : [0, 1] → [0, 1] such that

Wφ
1 (x, y) := W1(φ(x), φ(y)) = W2(x, y) .

Space of Graphons Ŵ (Lovász & Szegedy, 2006)

Ŵ := W/ ∼= .

For finite labeled graphs, the corresponding graphons are the equivalent classes
for identification modulo graph isomorphisms.

Compare with a measure given by two different pushforwards T1, T2 : [0, 1] → R.
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Preparation/Preliminaries Embedding

Invariant functions on Kernels = functions on graphons

Recall the triangle density function

h△(G) =
Number of triangles in G

n3
=

1

n3

∑
ϕ : [3]→V (G)

∏
{i,j}∈E(G)

Aϕ(i),ϕ(j).

For a kernel W , the triangle density can be defined as

h△(W ) =

∫
[0,1]3

W (x1, x2)W (x2, x3)W (x3, x1) dx1 dx2 dx3 .

h△ is a function on the corresponding graphon. That is,

h△(V ) = h△(W ),

if V can be obtained from W by vertex permutations.
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Preparation/Preliminaries Topology

Convergence of Graph(ons)

(a) Half Graph (Kernel)

(b) Limit of Half Graph

(a) Checkerboard

Q. Where does this sequence of
graphons converge?

(b) Checkerboard after vertex relabeling

A. Both (a) and (b) are the same
graphon, but two different kernel
representations.

Graph Theory and Additive Combinatorics, Yufei Zhao
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Preparation/Preliminaries Topology

Metrics on Graphons

Recall: W1
∼= W2 if there is a measure preserving transform φ : [0, 1] → [0, 1]

such that
Wφ

1 (x, y) := W1(φ(x), φ(y)) = W2(x, y) .

How to define metrics for graphon convergence?

A general recipe

Start with any norm ∥ · ∥ on functions [0, 1]2 → [−1, 1]. Define δ as

δ(W1,W2) = inf
φ
∥Wφ

1 −W2∥.
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Preparation/Preliminaries Topology

Cut Metric: δ□

∥W∥□ := sup
S,T

∣∣∣∣∫
S×T

W (x, y) dx dy

∣∣∣∣ .
Cut metric (Frieze & Kannan, 1999) metrizes graph convergence (Lovász &
Szegedy, 2006).

(Gn)n converges in δ□ if
lim

n→∞
hF (Gn)

exists for all simple graphs F ∈ {−,∧,△,⋋,⊔,□,⊠,⋉,1, . . .}.

(Ŵ, δ□) is compact.1

Analogous to the weak topology over probabilities.

Example: Almost surely, random graph G(n, 1/2) converges to constant graphon

W (x, y) = 1/2 , ∀ (x, y) ∈ [0, 1]2 .

1uses Szemerédi’s regularity lemma

Oh, Pal, Somani & Tripathi (UW) Gradient flows on Graphons March 22, 2022 14 / 28



Preparation/Preliminaries Metric over Graphons

Invariant L2 metric δ2

For ∥ · ∥ = ∥ · ∥L2([0,1]2), we get the Invariant L2 metric δ2.

Stronger than the cut metric (i.e., δ□ ≤ δ2).

Gromov-Wasserstein distance between the metric measure spaces
([0, 1],Leb,W1) and ([0, 1],Leb,W2).

Provides geodesic metric structure on Ŵ.

Allows notion of geodesic convexity.

Analogous to the Wasserstein-2 metric over measures.

Borgs, Chayes, Lovász, Sós & Vesztergombi, 2008
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Preparation/Preliminaries Differentiable structure

What is a ‘gradient flow’ on a metric space?

On Rd

The ‘gradient flow’ u of a function
F : Rd → R is given by solutions of

u′(t) = −∇F (u(t)) ,

d

dt
F (u(t)) =

〈
u′(t),∇F (u(t))

〉
≥ −1

2

∣∣u′∣∣2(t)− 1

2
|∇F (u(t))|2 .

A curve u is a gradient flow of F if

d
dt

F (u(t)) ≤ − 1
2
|u′|2(t)− 1

2
|∇F (u(t))|2.

On (Ŵ, δ2)

Consider a curve ω and a function F on Ŵ.

Speed of ω: Metric derivative |ω′|

Metric Derivative of ω∣∣ω′∣∣(t) = lim
s→t

δ2(ωt, ωs)

|t− s| .

Gradient of F : Fréchet-like derivative

Fréchet-like derivative of F : DF

Provides a local linear approximation of F .

A curve u is a gradient flow of F if

d
dt

F (ω(t)) ≤ − 1
2
|ω′|2(t)− 1

2
|DF (ω(t))|2.

Gradient Flows in Metric Spaces and in the Space of Probability Measures - Ambrosio, Gigli
& Savaré, 2005
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Preparation/Preliminaries Differentiable structure

Fréchet-like derivative and existence of gradient flow

Theorem [OPST ’21]

If F

has a Fréchet-like derivative,

is geodesically semiconvex in δ2,

then starting from any W0 ∈ Ŵ, there exists a unique gradient flow curve (Wt)t∈R+

for F .
The curve satisfies ODE

Wt := W0 −
∫ t

0

DF (Ws) ds ,

inside Ŵ. At the boundary of Ŵ, add constraints to contain it.
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Preparation/Preliminaries Differentiable structure

Gradient flows on graphons

For the triangle density function h△,

h△(W ) =

∫
[0,1]3

W (x1, x2)W (x2, x3)W (x3, x1) dx1 dx2 dx3,

its Fréchet-like derivative is

(Dh△)(W )(x, y) = 3

∫ 1

0

W (x, z)W (z, y) dz .

Example of “potential energy”. Similarly, one has interaction energy and
internal energy.
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Preparation/Preliminaries Differentiable structure

Example

For the scalar entropy function

E(W ) =

∫
[0,1]2

h(W (x, y)) dx dy , h(p) = p log(p) + (1− p) log(1− p),

if 0 < W < 1, its Fréchet-like derivative is

(DE)(W )(x, y) = log

(
W (x, y)

1−W (x, y)

)
.

Gradient flow
Ẇt(x, y) = −(DE)(Wt)(x, y) ,

converges to the constant W ≡ 1/2.
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Preparation/Preliminaries Differentiable structure

Example

Given DhF and DE, we can now perform a gradient flow to minimize h△ + E
on the space of graphons.
Given initial conditions, one needs to solve for all x, y ∈ [0, 1],

W ′
t (x, y) = −

[
3

∫ 1

0

W (x, z)W (z, y) dz + log

(
W (x, y)

1−W (x, y)

)]
.

Figure: Gradient flow of h△ + 10−1E
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Convergence of Euclidean Gradient flows

Euclidean Gradient flow and Gradient flow on Ŵ

Consider a function F : Ŵ → R that has following gradient flow

W (t) = W0 −
∫ t

0

DF (W (s)) ds .

Note that the function F can be regarded as a function on symmetric matrices
Fn : Mn → R. Suppose that Fn has a gradient flow. It is then given by

V (n)(t) = V
(n)
0 −

∫ t

0

∇nFn

(
V (n)(s)

)
ds .

Question?

Are the curves V (n) and W close (if n is large)?
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Convergence of Euclidean Gradient flows

Euclidean Gradient and Fréchet-like derivative

Fréchet-like derivative [OPST ’21]

A symmetric measurable function ϕ ∈ L∞([0, 1]2) is said to be Fréchet-like derivative

DF (W ) of F at W ∈ Ŵ if

lim
U∈W,

∥U−W∥2→0

F (U)− F (W )− ⟨ϕ,U −W ⟩L2([0,1]2)

∥U −W∥2
= 0 .

Recall that F : Ŵ → R can be regarded as a function Fn : Mn → R.
Let ∇nFn be Euclidean derivative of Fn : Mn → R.

limn→∞ n2∇nFn(W ) = DF (W ) as graphons.
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Convergence of Euclidean Gradient flows

Scalings of derivatives

Scaling derivatives for mean

Fn

(
1

n

n∑
i=1

δxi

)
=

1

n

n∑
i=1

xi

∇Fn =
1

n
1

F (µ) =

∫
xdµ

∇WF (µ) ≡ 1.

lim
n→∞

n∇Fn = ∇WF (µ).

Scaling derivatives for edge density

Fn(An) =
1

n2

n∑
i=1

n∑
j=1

An(i, j)

∇Fn =
1

n2
1

F (W ) =

∫
[0,1]2

W (x, y)dxdy

DF (W ) ≡ 1

lim
n→∞

n2∇Fn = DF
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Convergence of Euclidean Gradient flows

Euclidean gradient flow and gradient flow on Graphons

Gradient flow on Ŵ

d

dt
W (t) = −DF (W (t))

= −n2∇nF (W (t))

Gradient flow on Mn

d

dt
V (t) = −∇nF (V (t))

The curve W̃ (t) := V (n2t) satisfies

d

dt
W̃ (t) = −n2∇nF (W̃ (t)) = −DF (W̃ (t)) .

That is, it is reasonable to expect that the gradient flow on Graphons can be
obtained by a scaling limit of Euclidean gradient flows.
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Convergence of Euclidean Gradient flows

Convergence of Euclidean Gradient Flow

Theorem [OPST ’21]

Let F : Ŵ → R be a function with gradient flow W (t), t ≥ 0.

Consider the Euclidean gradient flow of Fn : Mn → R starting at V
(n)
0 , i.e.,

V (n)(t) := V
(n)
0 −

∫ t

0

∇nFn

(
V (n)(s)

)
ds,

with adjustments at the boundary.

Set W (n)(t) = V (n)(n2t).

If W
(n)
0

δ□−−−→ W0, then

W (n) δ□−−−→ W as n → ∞ ,

uniformly over compact time intervals in [0,∞).
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Convergence of Euclidean Gradient flows

Simulations

By Turán’s theorem: The n-vertex triangle-free graph with the maximum
number of edges is a complete bipartite graph.

Q. Can one hope to recover this theorem through an optimization problem on
graphons?

(a) Gradient flow of 10h△ − h− (b) Approximate complete bipartite graphon
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Future directions

Ongoing and Future directions

Study convergence of stochastic gradient descent with and without added noise.

Specialize the theory on optimization over multiple layer NNs.

Limiting curves for other “mean-field interactions” on graphs.
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Conclusion

Optimization on graphs is hard due to discreteness.

However, gradient flows exist on graphons, their infinite limiting space.

Analysis is similar to calculus in Wasserstein-2 spaces.

Approximated by finite dimensional gradient flows on matrices.

Thank you!

ArXiv version: https://arxiv.org/abs/2111.09459
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