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The OT problem

Setup
® B separable Banach space (if B = R” take Euclidean || - ||).
® L, v proba. on B with finite -moment, r € [1, 00).

A proba. 8 on B x B is a transport from p to v (6 € O(u, v)) if it
has marginals w, v, i.e. if 8 is the law of (X, Y): X ~pu, Y ~v.

Given a cost function v, the Optimal Transport problem is:

p(w,v):= inf )/vdG: inf  Ev(X,Y). (OT)

0cO(u,v X, Yo

If v(x,y)=||x—yl||" then

1
.

Wi, v) :== p(u, v)
is the Wasserstein (a.k.a. Monge-Kantorovich) distance.

Often one takes v cont. and s.t. 0 < v < c(1+ ||x]|"+ |ly]|").
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Variants of OT

The OT problem admits many interesting variants, e.g.:

® 1, v defined on different spaces

® Multiple Marginals w1, ..., Iy
® Unbalanced OT: u(B) # v(B)

Some variants impose additional (linear) constraints, e.g.:

1.
2. Invariant OT: § =0 o g 'Vg e G, G group acting on B x B
3.

4. Causal OT: P((Yy, ..., Yi) € B Xy, ..., Xy) =

OT with capacity contraints: % <c
Martingale OT: E°[Y|X] = X.

P((Yi,..., Y:) € B| Xq,...X;) for all meas. B

See respectively e.g.: Kormal and McCann ('14), Zaev ('15),
Beiglbock, Henry-Labordére, Penkner ('13), Backhoff, Beiglbock,
Lin and Zalashko ('17).
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Discretisation of measures
How can one approximate u with finitely supported [i?

The Optimal r-Quantisation problem of order k:

inf{W,(u, ) : fi proba : # supp (B) <k} (OQ)

Discretisation which satisfy additional constraints often exist:

Tchakaloff ('57), Beiglbock, Nutz ('14)
If B=R", given f € L'(u;R™) there exists proba. [ s.t.

#supp(f) < by, supp 4 C supp k, /fduz/fdﬂ- (©)

Let M(xo) be the family of laws of martingales (Mo, . .., M) s.t.
Mo = xo. If € M(x0) then 34 € M(xp) s.t. (C) holds.
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Discretisation of the OT problem

Applications of discretisation to OT?

If w, v have finite support, then (OT) is a finite-dimensional LP, so
it can be solved numerically (with great efficiency if an entropic
regularisation is considered).

To compute p(u, v), construct fin. sup. proba. (%, %) — (
such that p(u, v) = limg p(2%, D). Then easily compute p(i*,
so get p(u, v).

Can one adapt the above method to constrained OT 7
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Discretising constrained O T

Let ©.(u, v) be the set of constrained transports from p to v.
Call (u, v) viable if ©(w, v) # 0.
Questions :
(Q1) If (u, v) viable, can find viable fin. sup. (2%, %) — (u,v) ?
(Q2) How can (g, 0¥) be computed?
(Q3) Given (@K, o¥) = (w, v) asin (Q1), if
pc(p, v) == inf Ev(X,Y)

Oc(u,v)
does p.(4*%, %) — pc(u, v)?
(Q4) Can choose (%, D) which satisfies optimality property?
(A

(Q5) Can choose (X, 0%) which satisfies additional constraints ?
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Martingale OT and Strassen’s Thm

We focus on MOT; if (u, v) fin. supp. it is an LP, which can be
solved efficiently with entropic regularisation, see De March ('18).

Let M(u, v) := ©c(u, v) be the set of martingale transports from
wtov,ie 6e€ M(u,v)if:

6 law of (X, Y): X ~u, Y ~v, E[Y|X] = X, or equiv. if
6 €O v): [g(x)(y—x)do(x,y) =0 Vg cont. bdd.
Strassen’'s Thm ('65)

M(p, V) £D<=pu< v ...

p <cvmeans [ fdu < [ fdv for all f : B — R convex cont.
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Discretisations preserving the convex order
So, (Q1) and (Q2) become: given u <. v, 3 fin. sup. proba.
(ak, o%) — (w, v) s.t. gk <. 0k? How can one compute them?

Find discretisation Dy : {Proba.} — {Proba. on k points}
preserving <., take fix = Dx(u), Ox = Dx(v). Known Dy's:
1 Dy(a) =235  64(), where x(a):= kf,i1 Fi(t)dt
k
Baker ('12): Considers only B =R

2 Pages and Wilbertz ('12). Defined for B = R", but preserves
<c only for n = 1. Defined only for proba. with cpt. supp..
Does not generalise to several marginals.

Other ways?
3 Apply different operators to u and v.
4 Relax convex order/martingale constraint



Discretisation via Sampling and projections

Alfonsi, Corbetta, Jourdain ('19):

Given given u <. v on R”, and arbitrary fin. sup. proba.
(@K, D) — (w, v), replace % with its W,-projection & on
{a:a <. Dk}, then (&%, 0%) — (u, v).

Analog.: can replace D with its W,-projection 5% on
{B: ak <. B}, then (A%, 6°) = (u.,v).

B¥ cannot be computed. If i is the empirical meas. %Zf‘zl dx,
with X; ~ u IDD, and analog. 0¥, then & can be computed
numerically, and (&%, 0%) — (u, v) a.s..

Guo and Obtdj ('19):
Although E[Y|X] = X, only ask that ||E[Y*|X*] — XX||x — 0
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Our approach: discretise martingales !
Instead of (Q1),(Q2), consider the analog. statement for rv:

Given X, Y € LY(P; B) such that E[Y|X] = X, how to build finitely
valued X*, Y* € [}(P;B) s.t.

E[Y¥ XK = X*, (XK, Y9) = (X, Y)in L?

Idea: given C(k) partition of B with k elements and s.t.
B .= o(C(k)) 1 B(B), let

X5 :=E[X|o"(X)], Y*:=E[Y|o*(X, Y)];
o%(X) = X~}(B¥) is the smallest o-alg. s.t. X is BX-meas
(resp. o*(X,Y) = (X, Y) YB* x BX)...(X, Y) is BX x Bk-meas).
Proof: Clearly #Im(X*) < k and #Im(Y*) < k2. The tower
property gives E[Y*|XK] = Xk. Since o%(X) 1 o(X) and
ak(X,Y)) 1 o(X,Y), by martingale convergence thm
(XK, Y¥) = (X, Y) in L.
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Evaluating our approach

Pros:
® simple proof
e works for infinite dimensional B
e explicit expression of Xk, Yk
® can easily be computed numerically by evaluating integrals
® outputs non-random (2, o)
Cons:

® Needs a 6 € M(u,v) as an input. Only w, v are given, but
one such 6 can be calculated: if B =R in many ways, if
B = R" by extending Bass' construction (Henry-Labordére)
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Optimality: link with Voronol's quantisation

Theorem

If B =R", 3B = o(C(k)) which minimises ||[X — X¥||2, and it is
given by the optimal Voronoi 2-quantisation of u or order k.

Sketch of Proof: Sy .= {f :B — B : #Im(f) < k} k-simple fns.
S = {Sb(x) == K b'1ci(x), C := (C')k, k-partition of B}.

Call b" € B ‘point’, and C' C B ‘cell’. Fix b= (b')". Clearly the
Voronoi partition

Ci(b) = {x: |Ix = b'l| = min ||x — DI}

minimizes ||S2(x) — x|| at each x over all k-partitions; in partic.
C(b) minimizes ||S2(X) — X]|.r.
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Proof of optimal Voronol quant.= optimal mart.
quant.
Let b minimize
f(b) := min 11S2(X) — X||1r;

then Sg. solves infres, [|f(X) — X]|.r, which solves (OQ) if X ~
has density. Sg is the optimal Voronoi quantisation.

Let us instead first fix C and minimise over b; if r = 2 then the
‘martingale quantisation’ E[X|o(C)] equals

min 1SE(X) — X]|.r, solved by b’ = baru(-|C").

The optimal martingale quantisation is given by C which
minimizes |[E[X|o(C)] — X|[.r. Since infyinfc = infcinf, we get
C = C,b=b, i.e. optimal Voronoi quant.=optimal mart. quant.
O
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Generalisation of martingale discretisation

More generally: take any finitely valued Y% — Y in L!, define
XK :=E[Y¥|o¥(X)], then

(X5 YRy = (X, Y)in LY, E[YFXK = Xk
Useful if want Y* to have fewer than k? values: however, link to

optimal quantisation is lost.

Could be useful to satisfy additional constraints, since if B = R”
and f : R” — R™ then we know 3Y* s.t. Ef(Y) = Ef(Y¥);
however, we don’t normally know how to compute such Y*.

Analog, given g : R?" — R™ we know 3(X*, Y*)in L1 s.t.
Eg(X, Y) =Eg(X*, Y¥) and E[YX|X¥] = X*...but we don't know
how to compute (X*, Y*).
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Stability of Martingale OT
Backhoff-Veraguas and Pammer ('19):
If (uk, v¥) = (u, v) and vk — v > 0 uniformly then

inf Evi(X,Y)— inf Ev(X,Y 1
i (X.Y) it (X.Y) (1)
holds if B = R, and ‘We think that our approach can also be
adapted to cover higher dimensions.’

Remark
Let m% be a martingale law with m% — 7* and with marginals

(uk, ), then
E™(v(X,Y)) > liminf inf EvA(X,Y)> inf Ev(X,Y)
ko M(uk,vk) M(p,v)

so (1) holds along minimising subsequence if
T € argminge aq(u.n)E" (V(X, Y))
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Summary

1. Given u <. v, we found simple construction of fin. sup.
proba. (gk, 0%) — (u, v) s.t. gk <. DK. This construction
admits several variants.

2. (@, 0%) can be chosen to satisfy some optimality property,
e.g. ¥ is the Voronoi quantisation of w and so it minimises

Wa(:, 1) over {fi : #suppft < k}.

3. We are working on satisfying additional constraints and
optimality properties. Once done, we'll submit.
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