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Section 1

Path-dependent optimal transport
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Semimartingale optimal transport in continuous time

(Tan & Touzi (2013); Huesmann & Trevisan (2017); Backhoff-Veraguas,
Beiglböck, Huesmann & Källblad (2017), etc.) Consider probability measures P
such that X is a semimartingale,

Xt = X0 +

∫ t

0

αP
s ds+Mt, ⟨X⟩t = ⟨M⟩t =

∫ t

0

βP
s ds, P-a.s.,

We say P has characterstics (αP, βP).

Semimartingale optimal transport problem

We want to minimise

V (µ0, µ1) = inf
P∈P(µ0,µ1)

EP
∫ 1

0

H(αP, βP) dt,

where P(µ0, µ1) contains probability measures satisfying

P ◦X−1
0 = µ0, P ◦X−1

1 = µ1.

The cost function H is convex in (α, β) and may depend on (t,X) as well.
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Path-dependent constraints

Instead of the marginal constraint P ◦X−1
1 = µ1, how about other types of

constraints? For example:

EPX1 = c, EPG(X) = c, P ◦G−1 = ρ, P(G(X) ≤ 0) ≤ c, etc.

General abstract constraints
Let N ⊆ P be a convex subset that is closed with respect to the weak topology
and define F : Cb(Ω) → R ∪ {+∞} by F (ψ) := supµ∈N

∫
Ω
ψ dµ.

F ∗(µ) = sup
ψ∈Cb(Ω)

∫
Ω

ψ dµ− F (ψ) =

{
0, µ ∈ N ,

+∞, µ /∈ N .

This function penalises measures outside N . Some examples:

EPG(X) = c =⇒ F ∗(µ) = sup
λ∈Rm

λ · (c− Eµ(G(X))),

P ◦G−1 = ρ =⇒ F ∗(µ) = sup
λ∈Cb(Rm)

∫
Rm

λ(dρ− dµ).
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Path-derivatives

Space of all paths: Ω = C([0, 1],Rd), X is the canonical process.
Space of all stopped paths: Λ = {(t, ω·∧t) : t ∈ [0, 1], ω ∈ Ω}.

Dupire (2009) introduced non-anticipative path-derivatives operating on functions
C1,2(Λ). Also see Cont & Fournié (2013); Ekren, Touzi & Zhang. (2016).

Dt: a time derivative where we extend forward in time by dt while remaining
constant in space.

∇x,∇2
x: space derivatives where we perturb the end point by dx.
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Functional Itô formula

Formally, we define the path-derivatives using the functional Itô formula.

Definition

We say ϕ ∈ C1,2(Λ) if there exist functions
(Dtϕ,∇xϕ,∇2

xϕ) ∈ C(Λ;R×Rd × Sd) such that, for any semimartingale measure
P, the following functional Itô formula holds:

ϕ(t,X)− ϕ(0, X) =

∫ t

0

Dtϕdt+∇xϕ · dXt +
1

2
∇2
xϕ : d⟨X⟩t, P-a.s.

The functions Dtϕ,∇xϕ,∇2
xϕ are known as the time derivative, first order space

derivative and second order space derivative of ϕ, respectively.

Note that A : B = tr(ATB) for matrices A and B.
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Langrange multiplier for “semimartingale measures”

Lemma

Suppose that µ ∈ M+(Ω) and ν ∈ M+(Λ). Then we have the equality∫
Ω

ϕ(1, ·) dµ−
∫
Ω0

ϕ(0, ·) dρ0 =

∫
Λ

Dtϕ+ α · ∇xϕ+
1

2
β : ∇2

xϕdν (1)

holds for all ϕ ∈ C1,2(Λ) if and only if all of the following hold:
(a) dµ× dt = dν,
(b) µ ∈ P(ρ0) and
(c) X is a µ-semimartingale with characteristics (α, β).

Let us rewrite (1) using the shorthand L(ϕ, µ, ν, α, β) = 0
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Path-dependent optimal transport

Our problem is

V = inf
P∈P(ρ0)

∫
Λ

H(αP, βP) dtdP s.t. P ∈ N , X is a P-semimartingale

= inf
P∈P(ρ0)

F ∗(P) +
∫
Λ

H(αP, βP) dtdP s.t. X is a P-semimartingale

= inf
µ∈M+(Ω),
ν∈M+(Λ),

(α,β)∈L1(Λ,ν)

sup
ϕ∈C̄1,2

0 (Λ),
ψ∈Cb(Ω)

∫
Ω

ψ dµ− F (ψ) +

∫
Λ

H(α, β) dν − L(ϕ, µ, ν, α, β)

We want to swap the inf with the sup.

Use the Fenchel-Rockafellar duality theorem, operating on dual pairings of the
form

(µ, ν, ν̄, ν̃) and (ϕ1 + ψ,Dtϕ,∇xϕ,∇2
xϕ),

where dν̄ = αdν and dν̃ = βdν.
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Fenchel-Rockafellar duality theorem

Let f be convex and g be concave. Let f∗ and g∗ be the respective convex and
concave conjugates. Under some conditions,

inf
x∈X

f(x)− g(x) = sup
x∗∈X∗

g∗(x
∗)− f∗(x∗),

inf
x∈X

sup
x∗∈X∗

f(x) + g∗(x
∗)− ⟨x, x∗⟩ = sup

x∗∈X∗
inf
x∈X

g∗(x
∗) + f(x)− ⟨x, x∗⟩.
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Main duality result

Theorem

V = inf
P∈P(ρ0)

∫
Λ

H(αP, βP) dtdP s.t. P ∈ N , X is a P-semimartingale

= inf
µ,ν,α,β

sup
ϕ,ψ

∫
Ω

ψ dµ− F (ψ) +

∫
Λ

H(α, β) dν − L(ϕ, µ, ν, α, β)

= sup
ϕ,ψ

inf
µ,ν,α,β

∫
Ω

ψ dµ− F (ψ) +

∫
Λ

H(α, β) dν − L(ϕ, µ, ν, α, β)

= sup
ψ∈Cb(Ω),ϕ∈C1,2(Λ)

−F (ψ)−
∫
Ω0

ϕ(0, ·) dρ0,

s.t. ϕ(1, ·) ≥ −ψ and Dtϕ+H∗
(
∇xϕ,

1

2
∇2
xϕ

)
≤ 0.
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Properties of optimiser

inf
P∈P(ρ0)∩N

∫
Λ

H(αP, βP) dtdP = sup
ψ∈Cb(Ω),ϕ∈C1,2(Λ)

−F (ψ)−
∫
Ω0

ϕ(0, ·) dρ0,

s.t. ϕ(1, ·) ≥ −ψ and Dtϕ+H∗
(
∇xϕ,

1

2
∇2
xϕ

)
≤ 0.

The primal problem is attained, i.e., there exists an optimal P̃ with
characteristics (α̃, β̃).

If (ψn, ϕn) is a maximising sequence of the dual problem, then

ϕn + ψn
dP̃→ 0, Dtϕn +H∗

(
∇xϕ

n,
1

2
∇2
xϕ

n

)
dP̃×dt→ 0,

∇H∗
(
∇xϕ

n,
1

2
∇2
xϕ

n

)
dP̃×dt→ (α̃, β̃).

Under some conditions, via partial comparison principles for PPDEs, we
recover the HJB equation without using the dynamic programming principle.
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Optimal transport for volatility calibration

Figure: Volatility σ(t, x, y) (y is the running minimum) calibrated to European puts,
down-and-out puts (all possible barriers) and lookback puts, at all strikes and four
different maturities. The figure shows the t cross sections.
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Section 2

Robust hedging in continuous time

I Guo (Monash CQFIS) Robust hedging of American options March 2022 13 / 33



Robust hedging: model uncertainty

Consider a market with stocks X and some European claims g which WLOG have
initial prices of 0. We are allowed to trade X dynamically and g statically.

Let Q ⊂ P be the set of possible “models”, i.e., X is martingale, g has zero
expectation, etc.

Consider a European claim Z. Worst case model price:

sup
P∈Q

EPZ.

Super-hedging price:

π(Z) := inf{x : ∃(q, h), s.t. x+

∫ 1

0

q · dXt + h · g ≥ Z, Q-q.s.}.

It is easy to check that
π(Z) ≥ sup

P∈Q
EPZ.

Duality (equality) results are obtained in various settings by Denis & Martini
(2006); Soner, Touzi & Zhang (2013); Neufeld & Nutz (2013); and Possamäı,
Royer & Touzi (2013); Hou & Ob lój (2018) and many more.
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Hedging duality via Path-dependent OT

Theorem

Let H : Λ× Sd → R ∪ {+∞} satisfy some assumptions and H∗(t, ω, ·) be the
convex conjugate of H(t, ω, ·). Define

V := sup
P

inf
h∈Rm

EP(−h · g + Z)− EP
∫ 1

0

H(βP
t ) dt,

V := inf
h∈Rm,ϕ∈C1,2(Λ)

ϕ(0, X0),

subject to ϕ(1, ·) ≥ Z − h · g and Dtϕ+H∗
(
1

2
∇2
xϕ

)
≤ 0.

Then V = V. Moreover, if V is finite, then the supremum is attained.
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Hedging duality via Path-dependent OT

Let H(β) be 0 if β ∈ D (volatility constraint), or ∞ otherwise. Then the dual is

V = inf
h∈Rm,ϕ∈C1,2(Λ)

ϕ(0, X0),

subject to ϕ(1, ·) ≥ Z − h · g and Dtϕ+ sup
β∈D

1

2
∇2
xϕ : β ≤ 0. (2)

Each ϕ is actually a super-hedge. For every P ∈ Q

Z − h · g − ϕ(0, X0) ≤ ϕ(1, X)− ϕ(0, X0)

=

∫ 1

0

(Dtϕ+
1

2
βP : ∇2

xϕ)dt+∇xϕ · dXt, P-a.s.

≤
∫ 1

0

∇xϕ · dXt.

Hence ϕ(0, X0) ≥ π(Z). Since this works for all ϕ satisfying (2), it implies

V = inf
ϕ∈C1,2

0 (Λ),(2)

ϕ(0, X0) ≥ π(Z) ≥ sup
P∈Q

EPZ = V = V,
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Robust hedging American options

Let Z be an American-style claim. Worst case model price:

sup
τ∈T ,P∈Q

EPZ(τ, ·).

Super-hedging price:

πA(Z) := inf{x : ∃(p, q, h) s.t.

x+

∫ τ

0

p · dXt +

∫ 1

τ

qτ · dXt + hg ≥ Zτ ,QD-q.s.,∀τ ∈ T }.

Again, it is easy to check πA(Z) ≥ supτ∈T ,P∈Q EPZ(τ, ·).

When the set of statically traded European options is non-empty, there may be a
duality gap, which can be eliminated by enlarging the probability space.

In discrete time, various duality results for American options are obtained by
Dolinsky (2014); Hobson & Neuberger (2017); Bayraktar & Zhou (2017);
Aksamit, Deng, Ob lój & Tan (2019); and more. Some relevant works in
continuous time include Herrmann & Stebegg (2017); Tiplea (2019); Grigorova,
Quenez & Sulem (2021) etc.
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Overview

The main idea of Aksamit et al. (2019) is to enlarge the space Ω with the
stopping decisions to obtain Ω̄. Then the American option can be seen as a
European option under the enlarged space.

In the case where there is no statically traded European options g.

π̄(Z) = πA(Z) ≥ sup
P̄∈Q̄

EP̄Z = π̄(Z),

sup
P̄∈Q̄

EP̄Z = sup
τ∈T ,P∈Q

EPZ(τ, ·).

When g does exist, then we have to introduce a second enlarged space Ω̂ which
includes the price process of g as another martingale.

π̄g(Z) = πAg (Z) ≥ π̂A(Z) = ¯̂π(Z) ≥ sup
¯̂P∈ ¯̂Q

E
¯̂PZ ≥ sup

P̄∈Q̄g

EP̄Z = π̄g(Z),

sup
¯̂P∈ ¯̂Q

E
¯̂PZ = sup

τ̂∈T̂ ,P̂∈Q̂
EP̂Z(τ̂ , ·).
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Continuous time issues

We mostly focus on the case where there is no g.

Pricing hedging duality for European options is known in continuous time, and
naturally extends to the enlarged space.

The equality π̄(Z) = πA(Z) can also be argued in mostly the same way.

However, the equality

sup
P̄∈Q̄

EP̄Z = sup
τ∈T ,P∈Q

EPZ(τ, ·),

creates difficulties in continuous time. Possible approaches include approximating
with discrete time, Doob-Meyer type decomposition of non-linear Snell envelopes,
reflected 2BSDEs, etc.
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The equality π̄(Z) = πA(Z) can also be argued in mostly the same way.

However, the equality

sup
P̄∈Q̄

EP̄Z = sup
τ∈T ,P∈Q

EPZ(τ, ·),

creates difficulties in continuous time. Possible approaches include approximating
with discrete time, Doob-Meyer type decomposition of non-linear Snell envelopes,
reflected 2BSDEs, etc.
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Section 3

Duality for American options:
Convexifying stopping times and martingale measures

I Guo (Monash CQFIS) Robust hedging of American options March 2022 20 / 33



Enlarged space

The original space for our model is Ω := C([0, 1];Rd) with canonical process X.
We enlarge it to Ω̄ := Θ× Ω where

Θ := {ϑ ∈ C([0, 1],R) : ϑt = θ ∧ t, for some θ ∈ [0, 1]}.

Θ is isometric to [0, 1].

t

θ

Most aspects of Ω can be naturally extended to Ω̄, include semimartingale
measures (since ϑ semimartingale with characteristics (1(t ≤ θ), 0)). E.g., we
define Q̄ to be the set of measures under which X is a martingale.
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Path-dependent optimal transport on Ω̄

Also define the “stopped paths” of Ω̄, by

Λ̄ := {(t, ω̄·∧t) : t ∈ [0, 1], ω̄ ∈ Ω̄}.

So elements of Λ̄ are (t, ω̄·∧t) = (t, ϑ·∧t, ω·∧t) = (t, θ ∧ t, ω·∧t).
Functional Itô calculus and PPDEs can be extended in the same way.

The path-dependent optimal transport duality results (Guo and Loeper (2021))
can be applied here.

Theorem

sup
P̄∈Q̄D

EP̄f = inf
ϕ∈C1,1,2

0 (Λ̄)

ϕ(0, 0, X0),

subject to ϕ(1, ·, ·) ≥ f and Dtϕ+ 1(t ≤ θ)∇θϕ+ sup
β∈D

1

2
β : ∇2

xϕ ≤ 0.
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European duality on the enlarged space

Theorem

sup
P̄∈Q̄D

EP̄f = inf
ϕ∈C1,1,2

0 (Λ̄)

ϕ(0, 0, X0),

subject to ϕ(1, ·, ·) ≥ f and Dtϕ+ 1(t ≤ θ)∇θϕ+ sup
β∈D

1

2
β : ∇2

xϕ ≤ 0.

By the functional Itô formula, for each ϕ and P̄ ∈ Q̄D, the following holds P̄-a.s.

f − ϕ(0, 0, X0) ≤ ϕ(1, ·, ·)− ϕ(0, 0, X0)

=

∫ 1

0

(Dtϕ+ 1(t ≤ θ)∇θϕ+
1

2
βP : ∇2

xϕ)dt+∇xϕ · dXt

≤
∫ 1

0

∇xϕ · dXt.

Hence ϕ(0, 0, X0) ≥ π̄(f). Since this holds for all ϕ, it implies

sup
P̄∈Q̄D

EP̄f ≥ π̄(f).
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Convexifying measures and stopping times

We still need to address supP̄∈Q̄ EP̄Z = supτ∈T ,P∈Q EPZ(τ, ·).

Given a pair (τ,P) ∈ T × P(Ω), we can associate it with P̄ ∈ P(Ω̄) so that
EPZ(τ, ·) = EP̄Z. So P(Ω̄) contains the “convex hull” of T × P(Ω).

But P̄ ∈ P(Ω̄) in general may correspond to “proper” random times, not even
randomised stopping times.

P1(ω1) = 1

τ1 = 1

P1(ω2) = 0

P2(ω1) = 0

τ2 = 0

P2(ω2) = 1

and =⇒
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P1(ω1) = 1

τ1 = 1

P1(ω2) = 0

P2(ω1) = 0

τ2 = 0

P2(ω2) = 1

P3(ω1) = 0.5, τ3(ω1) = 1

P3(ω2) = 0.5, τ3(ω2) = 0

and =⇒
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P1(ω1) = 1

τ1 = 1

P1(ω2) = 0

P2(ω1) = 0

τ2 = 0

P2(ω2) = 1

P3(ω1) = 1

τ3 = 0 or 1

P3(ω2) = 0

and =⇒

If we choose another measure carefully and only test against non-anticipative
functions, we can recover randomised stopping times. We also want to preserve
martingale properties which is tricky.
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A few concepts

Definition

Given a random time ρ, let R := 1(ρ ≤ t). Then the Azéma supermartingale is
defined as

Y = 1− oR = P(ρ > t | Ft).

Theorem (Itô-Watanabe)

Let Y be a non-negative càdlàg supermartingale with Y0 > 0. Then we have the
decomposition

Y =M(1−A)

where M is a positive local martingale, A is a right-continuous, increasing process
with A0 = 0. The decomposition is unique up to τ = inf{t : Yt = 0}.

Definition (Shmaya & Solan)

A randomised stopping time corresponds to an adapted, right-continuous,
increasing process A with A0 = 0 and A1 = 1.
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From random times to stopping times

Lemma

(a) For every µ ∈ P(Ω̄), there exists an increasing and adapted A with A0 = 0
and A1 = 1, and P ∈ P(Ω) with P ≪ µΩ, such that for every (non-anticipative)
ψ ∈ L∞(Λ),

µ(ψ(θ, ω·∧θ)) = EP
∫ 1

0

ψ(t, ω·∧t) dAt.

Proof outline: Define the raw IV process R from µ, for any E ∈ Fs,∫
Ω̄

1(θ > s, ω ∈ E) dµ = EµΩ
(
(1−Rs)1(ω ∈ E)

)
.

Then 1− oR is a non-negative µΩ-supermartingale (the Azéma supermartingale of
the random time associated with µ). It has the (Itô-Watanabe) multiplicative
decomposition 1− oR =M(1−A), so

EµΩ
(
(1−Rs)1(ω ∈ E)

)
= EµΩ

(
(1− oRs)1(ω ∈ E)

)
= EµΩ

(
Ms(1−As)1(ω ∈ E)

)
= EP((1−As)1(ω ∈ E)

)
,

where dP/dµΩ =M1.
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From random times to stopping times

Lemma

(a) For every µ ∈ P(Ω̄), there exists an increasing and adapted A with A0 = 0
and A1 = 1, and P ∈ P(Ω) with P ≪ µΩ, such that for every (non-anticipative)
ψ ∈ L∞(Λ),

µ(ψ(θ, ω·∧θ)) = EP
∫ 1

0

ψ(t, ω·∧t) dAt.

(b) For every µ ∈ P(Ω̄), there exists a family of true stopping times τr and
probability measures Pr, indexed by r ∈ [0, 1], such that for every η ∈ L∞(Ω̄),

µ(η(θ, ω)) =

∫ 1

0

EPr

η(θ = τr, ω) dr.

(c) For any a ∈ [0, 1] and any bounded and Fτa -measurable function γ,∫ 1

a

EPr

γ dr = (1− a)EPγ.

Roughly speaking, we obtain r by disintegrating µ according to the value of A.
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Why so complicated?

µ = 1/4, τ = 1

µ = 1/4, τ = 2

µ = 1/4, τ = 2

µ = 1/4, τ = 0
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Why so complicated?

A = 0

A = 1/4

A = 1/4

A = 5/8

A = 1/4

P = 0

P = 2/3

P = 1/3

P = 0
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Why so complicated?

r ∈ [1/4, 5/8]

r ∈ [5/8, 1]

r ∈ [1/4, 5/8]

r ∈ [5/8, 1]

r ∈ [0, 1/4]
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Why so complicated?

Why not disintegrate via t?

r ∈ [1/4, 1/2]

r ∈ [1/2, 1]

r ∈ [1/2, 1]

r ∈ [0, 1/4]
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Why so complicated?

Why not disintegrate via t? Or even just ω?

r ∈ [0, 1/4]

r ∈ [1/4, 1/2]

r ∈ [1/2, 3/4]

r ∈ [3/4, 1]
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...because we want to preserve martingale measures!

µ = 1/2, τ = 1

µ = 1/2, τ = 2
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...because we want to preserve martingale measures!

µ = 1/6, τ = 1

µ = 1/6, τ = 2

µ = 1/6, τ = 2

µ = 1/6, τ = 2

µ = 1/6, τ = 1

µ = 1/6, τ = 1

I Guo (Monash CQFIS) Robust hedging of American options March 2022 29 / 33



...because we want to preserve martingale measures!

r ∈ [0, 1/3],Pr = 1/2

r ∈ [0, 1/3],Pr = 1/4

r ∈ [0, 1/3],Pr = 1/4
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...because we want to preserve martingale measures!

r ∈ [1/3, 2/3],Pr = 1/4

r ∈ [1/3, 2/3],Pr = 1/4

r ∈ [1/3, 2/3],Pr = 1/4

r ∈ [1/3, 2/3],Pr = 1/4
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...because we want to preserve martingale measures!

r ∈ [2/3, 1],Pr = 1/4

r ∈ [2/3, 1],Pr = 1/4

r ∈ [2/3, 1],Pr = 1/2
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Disintegrating martingale measures

Lemma

Suppose that X is a martingale under µ ∈ P(Ω̄) with characteristic (0, β). Then
there exists a family of true stopping times τr and probability measures
Pr ∈ P(Ω), indexed by r ∈ [0, 1], such that for every η ∈ L∞(Ω̄),

µ(η(θ, ω)) =

∫ 1

0

EPr

η(θ = τr, ·) dr.

Moreover, each Pr ∈ P(Ω) is a martingale measure with characteristic
(0, β(t, t ∧ τr(ω), ω·∧t)).

Corollary

For any Z ∈ L∞(Ω̄), and any E ⊆ Ω,

sup
τ∈T ,P∈Q,P(E)=1

EPZ(τ, ·) = sup
P̄∈Q̄,P̄(Θ×E)=1

EP̄Z.
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Proof outline: For every s, a ∈ [0, 1] and E ∈ Fs, we show that∫ 1

a

EPr

(1(E)(X1 −Xs)) dr = 0.

t

θ

This is done by breaking into two terms:
before τr:

EPr

(1(E)1(τr > s)(Xτr −Xs))

after τr:

EPr

(1(E)(X1 −Xs∨τr ))

Then EPr

(X1 | Fs) = Xs holds for a countable dense set s ∈ [0, 1], dr-a.e.. The
continuity of X implies that it’s a martingale.

The diffusion coefficient can be proven in the same way, replacing X by
X2 −

∫ ·
0
β(t, t ∧ τr(ω), ω·∧t) dt.
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Pricing hedging duality for American options

Combining all previous elements together, we have the main result.

Theorem

Suppose Z ∈ Cb(Ω̄), then

πA(Z) = π̄(Z) = sup
P̄∈Q̄

EP̄Z = sup
τ∈T ,P∈Q

EPZ(τ, ·).

Similarly, in the case where the statically traded European options g are present,

πAg (Z) = π̂A(Z) = ¯̂π(Z) = sup
¯̂P∈ ¯̂Q

E
¯̂PZ = sup

τ̂∈T̂ ,P̂∈Q̂
EP̂Z(τ̂ , ·).

Further ongoing works include complexity reduction on the measurability of the
robust price and optimal super-hedging strategies, hedging multiple American
options and numerical implementations.
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Thank you for listening!

I Guo (Monash CQFIS) Robust hedging of American options March 2022 33 / 33


	Path-dependent optimal transport
	Robust hedging in continuous time
	Duality for American options:  Convexifying stopping times and martingale measures

