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Transport maps

Let X ∼ µ be a measure on Rd and let G ∼ γ stand for the

standard Gaussian.

If ϕ is such that ϕ(G )
law
= X , we call ϕ a transport map.

The existence and properties of such maps are useful for:

� Generative models and sampling algorithms.

� Understanding analytic properties of µ.
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Optimal transport

Definition (Wasserstein distance between µ and γ)

W2(µ, γ) := inf
π

{
Eπ
[
||x − y ||2

] }1/2

where π ranges over all possible couplings of µ and γ.

Brenier 87’: There exists a transport map ψopt : Rd → Rd :

E
[
‖ψopt(G )− G‖2

]
=W2

2 (µ, γ).

Caffarelli 00’: If µ is more log-concave than γd , ψopt is 1-Lipschitz.

(strong log-concavity: −∇2 log
(

dµ
dx (x)

)
� Id.)
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Poincaré inequalities

Gaussian Poincaré inequality: For any test function f ,

Var(f (G )) ≤ E
[
‖∇f (G )‖2

]
.

In general, X ∼ µ satisfies a Poincaré inequality with constant

Cp(µ) > 0, if,

Var(f (X )) ≤ Cp(µ)E
[
‖∇f (X )‖2

]
.
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An inequality of Brascamp and Lieb

Theorem (Brascamp-Lieb 76’)

If µ is more log-concave than γd , then Cp(µ) ≤ 1.

Proof (Cordero-Erausquin 02’).

Varµ(f ) = Varγd (f ◦ ψopt) ≤ Eγd
[
‖∇
(
f ◦ ψopt

)
‖2
]

≤ Eγd
[
‖∇ψopt‖2‖∇f (ψopt)‖2

]
= Eµ

[
‖∇f ‖2

]
.

5



An inequality of Brascamp and Lieb

Theorem (Brascamp-Lieb 76’)

If µ is more log-concave than γd , then Cp(µ) ≤ 1.

Proof (Cordero-Erausquin 02’).

Varµ(f ) = Varγd (f ◦ ψopt) ≤ Eγd
[
‖∇
(
f ◦ ψopt

)
‖2
]

≤ Eγd
[
‖∇ψopt‖2‖∇f (ψopt)‖2

]
= Eµ

[
‖∇f ‖2

]
.

5



Bounded log-concave

If µ is log-concave, but compactly supported on a ball of diameter

R, then Cp(µ) . R2. Several proofs exists:

� Localization (Payne-Weinberger)

� Refined Brascamp-Lieb (Kolesnikov-Milman)

� Moment Maps (Klartag)

Question

For such µ is it necessarily true that there exists an R-Lipschitz ϕ

with ϕ∗γd = µ?
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Motivation

A positive answer will not only recover known result but will also

imply:

1. Dimension-free Φ-Sobolev inequalities (generalizing both

Poincaré and log-Sobolev).

2. Bounds for higher eigenvalues of the weighted Laplacian.

3. Isoperimetric inequalities.

4. Improved rates of convergence for the CLT.
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Gaussian mixtures

We call µ = γd ? ν a Gaussian mixture. It was recently proved by

Bardet, Gozlan, Malrieu and Zitt that if diam(supp(ν)) ≤ R, then

Cp(µ) . eR
2
.

Later, Chen,Chewi and Niles-Weed extended the result to the

log-Sobolev inequality.

Question

Suppose that µ = γd ? ν and diam(supp(ν)) ≤ R. Is there an

eR
2
-Lipschitz ϕ with ϕ∗γd = µ?
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KLS

Let µ be log-concave and isotropic,∫
Rd

xdµ(x) = 0

∫
Rd

x ⊗ xdµ(x) = Id.

A famous conjecture of Kannan-Lovász-Simonovits postulates,

Cp(µ) ≤ C .

Current best bound, due to Chen: Cp(µ) ≤ do(1).

It seems natural to ask whether we can find a Lipschitz map ϕ

with ϕ∗γd = µ?
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KLS

� In general, one cannot find a Lipschitz transport map from γd

to µ.

� The existence of such map implies sub-Gaussian tails of µ,

which is not true for all isotropic log-concave measures.

� However, E. Milman showed that for KLS, it is enough to

have map which is ’Lipschitz on average’.

Question

If µ is log concave and isotropic, does there exists a map ϕ with

ϕ∗γ = µ, such that

Eγd
[
‖Dϕ‖2

]
≤ do(1)?
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Infinite-dimensions

By slightly altering our perspective, we give a positive answer to

the previous questions.

Let Ω := C ([0, 1],Rd) stand for the Wiener space with the Wiener

measure γ. We will let (Bt)t∈[0,1] denote a Brownian motion.

We consider Lipschitz mappings Φ : Ω→ Rd with DΦ bounded

almost surely.

Derivatives are taken in the Malliavin sense.
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Infinite-dimensions

Theorem (M.-Shenfeld)

Let µ be a measure on Rd . There exists map Φ : Ω→ Rd , with

Φ∗γ = µ and

1. If µ is log-concave with diam(supp(µ)) ≤ R,

‖DΦ‖ ≤ R.

2. If µ = γd ? ν and diam(supp(ν)) ≤ R,

‖DΦ‖ ≤ eR
2
.

3. If µ is log-concave and isotropic,

Eγ
[
‖DΦ‖2

]
≤ do(1).
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Malliavin calculus 101

Recall the Cameron-Martin space

H := {h ∈ Ω|ht =

t∫
0

ḣsds}.

It is also characterized by the fact that Bt + g is absolutely

continuous with respect to γ, iff g ∈ H.

Heuristically, for a a random variable F we define the Malliavin

derivative DF , as the Gateaux derivative in the H directions.
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Malliavin calculus 101

H has a natural inner product, 〈h, h′〉H :=
1∫

0

ḣt ḣ′tdt. Observe that

DF : Ω→ H and we denote by DFt , by DtF .

We say that a map F is R-Lipschitz (in the H directions), if

‖DF‖H ≤ R almost surely. This definition is justified, since

Varγ(F ) ≤ Eγ
[
‖DF‖2

H

]
.
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First attempt

We can mimic Caffareli’s Euclidean optimal transport result. Two

main issues to address:

� Need to define a Wasserstein metric on Ω.

� Need to embed µ in Ω.

First, define a metric, which is compatible with H:

dH(ω, ω′) =

‖ω − ω′‖H if ω − ω′ ∈ H

∞ otherwise
.
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First attempt

Define a measure µ̃ on Ω by

d µ̃

dγ
(ω) =

dµ

dγd
(ω1),

and consider,

min
Ψ∗γ=µ̃

E
[
dH (Ψ(B·),B·)

2
]
.

Equivalently,

min
ut

E

 1∫
0

‖ut‖2dt

 ,
where B1 +

1∫
0

utdt ∼ µ.
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First attempt

Define voptt := arg min
ut

E

[
1∫

0

‖ut‖2dt

]
.

Then, voptt (ω) = ψopt(ω1)− ω1, and Φopt(ω) = ω +
∫
vtdt

satisfies,

� Φopt
∗ γ = µ̃.

� (Φopt
1 )∗γ = µ.

This is unsatisfactory.
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Second attempt

We consider an optimization problem adapted to the filtration of

Bt .

Define vt := arg min
ut adapated

E

[
1∫

0

‖ut‖2dt

]
and dXt = dBt + vtdt.

Facts:

� X1 ∼ µ (this is the transport map).

� Ent (µ||γ) = 1
2

1∫
0

E[||vt ||2]dt.

� vt is a martingale, with vt(Xt) = ∇ ln
(
P1−t

(
dµ
dγd

(Xt)
))

.
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The Föllmer Drift - (Some) History

� Analogous problems were already considered by in the 30’s, by

Schrödinger.

� The process itself was first studied by Föllmer, in 85’, who

used it to derive a variational expression for entropy.

� It appeared implicitly in the works of Feyel and Üstünel, from

2004, in their study of infinite dimensional transportation

problems.

� In the context of functional inequalities, the use of the

Föllmer process was pioneered by Lehec in 2012.

� Lassalle identified the process as the solution to a causal

transportation problem in 2013.
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The Brownian transport map

Recall that X1 = B1 +
1∫

0

∇ ln
(
P1−t

dµ
dγd

(Xt)
)
dt. It can be shown

that

DXt = Id +

t∫
0

∇2 ln

(
P1−s

dµ

dγd
(Xs)

)
DXsds.

We write ∇vt := ∇2 ln
(
P1−t

dµ
dγd

(Xt)
)

and for h ∈ H, we

calculate,

fh(t) := 〈DXt , h〉H =

t∫
0

ḣsds +

t∫
0

∇vt〈DXs , h〉Hds.

In particular,
d

dt
fh(t) = ḣt −∇vt fh(t).

20



The Brownian transport map

Recall that X1 = B1 +
1∫

0

∇ ln
(
P1−t

dµ
dγd

(Xt)
)
dt. It can be shown

that

DXt = Id +

t∫
0

∇2 ln

(
P1−s

dµ

dγd
(Xs)

)
DXsds.

We write ∇vt := ∇2 ln
(
P1−t

dµ
dγd

(Xt)
)

and for h ∈ H, we

calculate,

fh(t) := 〈DXt , h〉H =

t∫
0
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The Brownian transport map

Solving this differential equation, we get, for every h ∈ H,

fh(1) =

1∫
0

e

1∫
t
∇vsds

· ḣ(t)dt.

So,

DtX1 = e

1∫
t
∇vsds

,

and

‖DX1‖2
H =

1∫
0

e
2

1∫
t
∇vsds

dt.
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The Brownian transport map

Direct calculations show,

∇vt := ∇2 ln

(
P1−t

dµ

dγ
(Xt)

)
=

Cov(µt)

(1− t)2
− 1

1− t
Id ,

where
dµt
dx
∝ dµ

dγd
(x)e

−(x−Xt )2

2(1−t) .

If diam(supp(µ)) ≤ R, clearly,

∇vt ≤
R2

(1− t)2
− 1

1− t
.

Moreover, by Brascamp-Lieb, if µ is log-concave,

∇vt ≤
1

t
.
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We apply the two inequalities to ‖DX1‖2
H =

1∫
0

e
2

1∫
t
∇vsds

dt

Theorem (M.- Shenfeld)

Consider X1 as a map from Ω = C ([0, 1],Rd) to Rd .

1. If µ is log-concave with diam(supp(µ)) ≤ R,

‖DX1‖ ≤ R.

2. If µ = γd ? ν and diam(supp(ν)) ≤ R,

‖DX1‖ ≤ eR
2
.

� The second result follows by showing ∇vt ≤ R2.

� Can be extended to semi-log concave measures.
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Further thoughts

We have demonstrated a Lipschitz map X1 : Ω→ Rd .

It seems natural to ask whether X· : Ω→ Ω is Lipschitz as well?

It turns out that there exist strongly log-concave measures, for

which X· is not Lipschitz, for any constant. This is contrast to the

optimal transport map Ψopt, which is provably 1-Lipschitz.
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Future directions

� Can the results be extended to larger classes of measures?

� What about similar, but different, constructions on the

Wiener space?

� Can similar results be proved for maps between finite

dimensional spaces?

� In particular, can the results be recovered for the Brenier map?
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Thank You
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The KLS connection

Instead of applying point-wise bounds, we could estimate

E
[
‖DX1‖2

H

]
= E

 1∫
0

e
2

1∫
t
∇vs(Xs)ds

.

For isotropic µ, define τ = 1
2 ∧ inf{t|∇vt(Xt) ≥ 2}.

1∫
0

∇vt(Xt) ≤ 2 +

1∫
τ

1

t
dt = 2 + log(τ).

So,

E
[
‖DX1‖2

H

]
≤ e4E

[
1

τ2

]
.
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The KLS connection

With the recent result of Yuansi Chen about the KLS constant, we

prove:

Theorem

Let µ be an isotropic log-concave vector in Rd . Then,

E
[
‖DX1‖2

H

]
= do(1).
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