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Solving polynomials

Classical problem: Solve a polynomial

f (x) = xn + a1x
n−1 + · · ·+ an−1x + an = 0

of degree n in one variable. Here a1, . . . , an are elements of some given
field K . We fix a base field k ⊂ K . Often K = k(a1, . . . , an).

Here by “solving” I mean finding a procedure or a formula which produces
a solution (or even better, every solution) x for a given set of coefficients
a1, . . . , an. The terms “procedure” and “formula” are ambiguous. To get
a well-posed problem, we need to specify what kinds of operations we are
allowed to perform. Elements of the base field k and the coefficients
a1, . . . , an of f are assumed to be given; we want to obtain each root of f
by performing these operations in a finite number of steps.
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Solving polynomials II

In the simplest setting we are only allowed to perform the four arithmetic
operations: addition, subtraction, multiplication and division.

In other words, we are asking if roots of
f (x) = xn + a1x

n−1 + · · ·+ an−1x + an = 0 can be expressed as a rational
function of a1, . . . , an.

For a general polynomial of degree n > 2, the answer is clearly “no”.
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Solving polynomials in radicals

A more interesting problem is “solving polynomials in radicals”.

Here one is allowed to use the four arithmetic operations and radicals of
any degree, where the mth radical (or root) of t is a solution to

xm − t = 0.

Once again, we want to obtain the roots of

f (x) = xn + a1x
n−1 + · · ·+ an−1x + an = 0

in a finite number of steps, using these operations.

The answer is “yes” is n 6 4 and “no” if n > 5 (Ruffini, Abel, Galois).
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From polynomials to torsors

If the polynomial

f (x) = xn + a1x
n−1 + · · ·+ an−1x + an

is separable over a field K , we can think of the problem of finding its roots
in geometric terms as follows.

Consider the n-dimensional étale algebra E/K , where E = K [x ]/(f (x)).
The class of this algebra in H1(K ,Sn) is represented by the Sn-torsor

τ : T → Spec(K ) ,

where T = Spec(E ). The two questions we have asked now become:

(1) Is every Sn-torsor τ : T → Spec(K ) split? (No, if n > 2.)

(2) Can every Sn-torsor τ : T → Spec(K ) be split by a solvable field
extension L/K? (No, if n > 5.)
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From Sn to an arbitrary algebraic group

The same questions can be asked if we replace Sn by an arbitrary algebraic
group G defined over a field k.

(1) Is every G -torsor T → Spec(K ) split? Here K is a field containing k.

(2) Can every G -torsor T → Spec(K ) be split by a solvable field extension
L/K?

If G is a (discrete) finite group, the answers are the same as before:
(1) “No”, unless G = 1, and (2) “No”, unless G is solvable.

In general, groups satisfying (1) are called “special”. These groups have
been studies and classified since the 1950s. In particular, Serre showed
that a special group is linear and connected (1958).

If G is connected, then (2) has a positive answer in many cases but is an
open problem in general. For example, for G = PGLn, the answer is “yes”
by the Merkurjev-Suslin Theorem.
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A Theorem of Tits

More generally, we have the following.

Theorem (Tits, 1990): Let G be an (almost) simple linear algebraic group
over a field K of any type, other than E8. Then every G -torsor
T → Spec(K ) can be split by a root extension L/K .

Note that in characteristic 0 a root extension is the same thing as a
solvable extension.

Question 1 (Tits): Is this true if G is of type E8?

The answer is not known. The following slightly easier question is also
wide open. Let us say that a finite group is almost solvable if its
composition factors are either cyclic or A5.

Question 2 (also Tits?) Is it true that every E8-torsor T → Spec(K ) is
split by a Galois field extension L/K with almost solvable Galois group
Gal(L/K )?
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Beyond solvable extensions

Since Questions 1 and 2 are out of reach at the moment, I will consider a
different but related problem by allowing a broader class of splitting
extensions.

Specifically, we will ask if every G -torsor can be split by finite
field extensions of level 1 or more generally, of level 6 d for a given
positive integer d . I will define the level of a finite field extension in a few
minutes. All solvable extensions are of level 1.

This new problem is related to (the algebraic form of) Hilbert’s 13th
Problem and has deep classical roots.

For a finite group this new problem is harder than the problem of solving
polynomials in radicals; there are no results analogous to the theorem of
Abel, Ruffini and Galois in this setting.

However, for a connected group (and specifically for E8) this problem
turns out to be more accessible.
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Polynomials of degree 5

Theorem (Bring, 1786): Let f (x) = x5 + a1x
4 + . . .+ a5 be a polynomial

of degree 5 over a solvably closed field K .

Then every root of f (x) lies in
the extension L/K obtained by adjoining a root of a polynomial of the
form x5 + tx + t, for some t ∈ K .

In other words, we can obtain every root of f (x) from a1, . . . , a5 and
elements of the base field k , if we are allowed to apply the four arithmetic
operations, extract roots and adjoin roots of polynomials of the form
x5 + tx + t. The last operation is akin to extracting the 5th root of t. In
both cases only one parameter is involved (namely t). In classical
language, every root of x5 + t + t is an algebraic (multi-valued) functions
of one variable, and so is every root of x5 − t.

Informally speaking, a field extension L/K is of level 6 1 if it can be
obtained by adjoining algebraic functions of 6 1 variables. In particular,
every field extension L/K of degree 6 5 is of level 6 1.
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Essential dimension of a field extension

Let us now define the notion of an algebraic function in 6 d variables
more formally.

Let K be a field containing a base field k, and L/K be a finite extension.
We say that the essential dimension edk(L/K ) is 6 d , if there exists an
intermediate field k ⊂ K0 ⊂ K and a field extension L0/K0 such that
L = L0 ⊗K0 K and trdegk(K0) 6 d .

The exact value of edk(L/K ) is then the smallest integer d such that
edk(L/K ) 6 d .

If L/K is separable, then the inequality edk(L/K ) 6 d is equivalent to
saying that L is generated over K by a single algebraic function in 6 d
variables.
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The level of a finite field extension

We will say that the level levk(L/K ) of L/K is 6 d if there exists a tower

Km

L
...

K1

K0 K

such that [Ki : Ki−1] <∞ and edk(Ki/Ki−1) 6 d for every i = 1, . . . ,m.
The level of L/K is the smallest such d ; I will denote it by levk(L/K ).
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Warning!

It is not known whether or not there exists a finite field extension L/K
such that k ⊂ K and levk(L/K ) > 1, for any base field k .
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The resolvent degree

Let G be an algebraic group over a field k, K/k a field extension and
T → Spec(K ) a G -torsor.

The resolvent degree rdk(T ) is the minimal level levk(T ) of a finite
extension L/K which splits T → Spec(K ).

The resolvent degree rdk(G ) of G is the maximal value of rdk(T ) as K
ranges over field extensions K/k and T ranges over G -torsors
T → Spec(K ).
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Hilbert’s 13th Problem

If G is a finite group, then rdk(G ) is the maximal value of levk(L/K ),
where L/K is a separable extension with Galois group G . In this case
rdk(G ) was defined by Farb and Wolfson, who refer to levk(L/K ) as the
“resolvent degree of L/K”.

(The term “level” is taken from an earlier
paper of Dixmier.)

Hilbert’s 13th Problem (the algebraic version): Find rdC(Sn) for every
positive integer n.

It is known that rdC(Sn) = 1 for n 6 5. It is not known whether
rdC(Sn) −→∞ as n→∞ or even if rdC(Sn) > 1 for any n.

All known upper bounds are of the form rdC(Sn) 6 n − ε(n), where ε(n) is
an unbounded but very slowly increasing function of n. The
latest/strongest are due to Wolfson (2020), Sutherland and
Heberle-Sutherland.
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New results: dependence on the base field

Theorem 1: Let G be an algebraic group over k, not necessarily smooth or
linear or connected.

Then rdk(G ) = rdk ′(Gk ′) for any field k ′ containing k.

Note that the case, where k ′ is algebraic over k is easy and was known to
the classics (e.g., Felix Klein). What is new here is that k ′ can be
arbitrary. For example, rdQ(Sn) = rdC(Sn).

Theorem 2: Let G be a smooth affine group scheme over Z. Assume that
the connected component G 0 is split reductive and the component group
G/G 0 is finite over Z. Let k be a field of characteristic 0. Then
rdk(Gk) > rdk ′(Gk ′) for any other field k ′.

Theorem 2 is primarily of interest in mixed characteristic, where
char(k) = 0 but char(k ′) > 0. If char(k ′) = char(k ′), then
rdk(Gk) = rdF (GF ) = rdk ′(Gk ′) by Theorem 1, where F is a prime field.
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New results: the resolvent degree of a connected group

Theorem 3: Let G be a connected algebraic group over a field k,

not
necessarily smooth or linear. Then rdk(G ) 6 5.

The proof proceeds in several steps.

1. Use Theorem 1 to reduce to the case, where k is algebraically closed.

2. Reduce to the case, where G is smooth. 1→ Gred → G .

2. Show that rdk(A) 6 1 for any abelian variety A. 1→ A[d ]→ A.

3. Use Chevalley’s Structure Theorem to reduce to the case, where G is
affine. 1→ Gaff → G → A→ 1.

4. Reduce to the case, where G is semisimple.
1→ Rad(G )→ G → G/Rad(G )→ 1.

5. Reduce to the case, where G is simple. 1→ µ→
∏

Gi → G → 1,
Gi minimal connected normal subgroups.

6. Show that rdk(E8) 6 5.
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A conjectural strengthening of Theorem 3

Conjecture 4: Let G be a connected algebraic group over a field k,

not
necessarily smooth or linear. Then rdk(G ) 6 1.

Remarks: (a) It suffices to prove this conjecture in the special case where
k = C and G is a simple group of type E8. The proof of Theorem 4 covers
the rest.

(b) Theorem 3 and Conjecture 4 are in the same spirit (but weaker) than
the questions of Tits we considered earlier. Recall

Question (Tits): Is it true that every E8-torsor T → Spec(K ) is split by a
Galois field extension L/K with solvable (or almost solvable) Galois group
Gal(L/K )?

Positive answer to Tits’ question =⇒ Conjecture 4 =⇒ Theorem 3.
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Some evidence for Conjecture 4

Conjecture (Serre, 1995): Let K be a field, G be a smooth algebraic group
over K , and T → Spec(K ) be a G -torsor.

If Ki/K are finite extensions of
K of relatively prime degrees, i.e., gcd([Ki : K ]) = 1, and each Ki splits T ,
then T is split over K .

Proposition: Let G be the simple algebraic group of type E8 over C. If
Serre’s conjecture holds for GK , for every field K containing C, then
Conjecture 4 holds.

Proof: Using Theorem 1, 2 and the proof of Theorem 3, we reduce to the
case, where G is a simple group of type E8 over k = C. It now suffices to
show that every G -torsor T → Spec(K ) over a solvably closed field K
containing C is split. To prove this, we will construct finite splitting field
extensions K2,K3,K5 and K>7 of K such that

[Kp : K ] is prime to p for p = 2, 3, 5,

[K>7 : K ] is not divisible for any prime > 7.
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Construction of K2, K3, K5 and K>7

K>7: Since the only exceptional primes of E8 are 2, 3 and 5, every
E8-torsor over K can be split by a field extension K>7/K of degree 2a3b5c .

This is a general fact, due to Tits; it does not use the assumption that K
is solvably closed.

K3: Consider the mod 3 Rost Invariant R3 : H1(∗,E8)→ H3(∗, µ3). By
Bloch-Kato, H3(∗, µ3) = 0, since K is solvably closed. In other words, T
lies in the kernel of R3. By a theorem of Chernousov, T → Spec(K ) is
split by some field extension K3/K of degree prime to 3.

K5 is constructed in the same way as K3.

K2: Using Bloch-Kato again, we see that T lies in the kernel of the mod 4
Rost invariant R4 : H1(∗,E8)→ H3(∗, µ4) and in the kernel of the
Semenov invariant Ker(R4)→ H5(K , µ2). Thus by a theorem of Semenov,
T is split by an odd degree extension K2/K .
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Construction of K2 in prime characteristic

Note that Semenov’s Theorem is only valid in characteristic 0.

In prime characteristic, we use Theorem 2 to reduce to characteristic 0.

In characteristic 0 the above argument shows that Serre’s conjecture =⇒
positive answer to Tits’ Question 1: every E8-torsor T → Spec(K ) is split
by some solvable extension L/K .

Hilbert’s 13th Problem for algebraic groups June, 2021



Construction of K2 in prime characteristic

Note that Semenov’s Theorem is only valid in characteristic 0.

In prime characteristic, we use Theorem 2 to reduce to characteristic 0.

In characteristic 0 the above argument shows that Serre’s conjecture =⇒
positive answer to Tits’ Question 1: every E8-torsor T → Spec(K ) is split
by some solvable extension L/K .

Hilbert’s 13th Problem for algebraic groups June, 2021



Construction of K2 in prime characteristic

Note that Semenov’s Theorem is only valid in characteristic 0.

In prime characteristic, we use Theorem 2 to reduce to characteristic 0.

In characteristic 0 the above argument shows that Serre’s conjecture =⇒
positive answer to Tits’ Question 1: every E8-torsor T → Spec(K ) is split
by some solvable extension L/K .

Hilbert’s 13th Problem for algebraic groups June, 2021


