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Thank you for inviting me to give a talk in this workshop.
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R-groups

An R-group is a linear algebraic group over R.

Γ = Gal(C/R) = {1, γ}, where γ is the complex conjugation.

For an R-group G, the Galois group Γ acts on G(C), and G(C)Γ = G(R).
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Abelian Γ-cohomology

Let A be a Γ-module, that is, an abelian Γ-group written additively. We
write

H1A := H1(Γ, A).

Recall:

Z1A = {a ∈ A | γa = −a},
B1A = {γa′ − a′ | a′ ∈ A} ⊆ Z1A,

H1A = Z1A/B1A.

For an R-torus T , we write

H1(R, T ) = H1
(
Γ, T (C)

)
.
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H1(R, T )

Notation:
For an R-torus T , we write

X∗(T ) = Hom(TC,Gm,C) (the character group),

X∗(T ) = Hom(Gm,C, TC) (the cocharacter group).

Proposition (B-Timashev 2021 arXiv)

Let T be an R-torus. The Γ-equivariant homomorphism

X∗(T )→ T (C),
(
ν : C× → T (C)

)
7−→ ν(−1)

induces a canonical isomorphism

H1 X∗(T )
∼−→ H1(R, T ).
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Notation: For an R-torus T ,

T0 is the maximal compact (anisotropic) subtorus,
T1 is the maximal split subtorus.

We have H1(R, T1) = {1} (easy; Theorem 90).

Write
T (R)(2) = {t ∈ T (R) | t2 = 1}.

For t ∈ T (R)(2) we have t · γt = t2 = 1, whence γt = t−1. Thus

T (R)(2) ⊂ Z1(R, T ),

and we have a canonical homomorphism

T (R)(2) → H1(R, T ), t 7→ [t].

Lemma (B. 1988)

The above homomorphism induces isomorphisms

T (R)(2)/T1(R)(2) ∼−−→H1(R, T );

T0(R)(2)/
(
T0(R)(2) ∩ T1(R)(2)

) ∼−−→H1(R, T ).
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Nonabelian Galois cohomology

Let A be a Γ-group (not necessarily abelian). By definition,

Z1A = {a ∈ A | γa = a−1}.

The group A acts on Z1A on the left by

a′ ∗ a = a′ · a · (γa′)−1 for a′ ∈ A, a ∈ Z1A.

We set
H1A = Z1A/A.

If G is an R-group, then G(C) is a Γ-group, and we set

H1(R, G) = H1
(
Γ, G(C)

)
.
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Using Galois cohomology to classify real orbits

G is an R-group acting on an R-variety V .
O is a Γ-stable G(C)-orbit in V (C).

Problem: Classify real orbits in O, that is, G(R)-orbits in O ∩ V (R).

Using H2 (if necessary), we determine whether O has real points, and if
yes, we find such a point x0. Set H = StabG(x0).

Theorem (Borel-Serre 1964)

There is a canonical bijection

ϕ : ker
[
H1(R, H)→ H1(R, G)

]
−→

[
real orbits in O

]
.
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Using Galois cohomology to classify real orbits (cont.)

We specify the bijection ϕ. Write i : H ↪→ G.
Let h ∈ Z1(R, H) be such that i∗[h] = [1].

Then
h = g−1 · γg for some g ∈ G(C).

Set

xh = g · x0.

Then
γxh = γg · γx0 = gh · x0 = g · x0 = xh ,

that is, xh ∈ O ∩ V (R), and

ϕ : [h] 7−→ G(R) · xh .

Clearly, for calculations we need explicit cocycles representing the
cohomology classes.
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Relation to arithmetic: H1 over a number field

Let K be a number field, and G be a connected reductive K-group. The
group H1(K,G) fits into a commutative diagram

H1(K,G)
ab1

//

loc
��

H1
ab(K,G)

loc
��∏

∞H1(Kv, G)
ab1

//
∏
∞H1

ab(Kv, G)

where H1
ab(K,G) and H1

ab(Kv, G) are certain abelian groups (the abelian
cohomology groups).

Moreover, this commutative diagram identifies H1(K,G) with the fibered
product of H1

ab(K,G) and
∏
∞H1(Kv, G) over

∏
∞H1

ab(Kv, G) (B.
1998).

We see that half of the problem of computing H1(K,G) is to compute the
H1 for a reductive R-group.
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Galois cohomology over R: simple groups

We discuss H1(R, G) for a connected reductive R-group G. First we
consider absolutely simple groups (= simple over C).

Adams and Täıbi 2018: H1(R, G) for “most” of the absolutely simple
R-groups G, but only the cardinalities, which is not sufficient for
applications.

Let G be an absolutely simple R-group of adjoint type.
Kac 1969: the R-forms of the Lie algebra LieG.
The same as to compute H1(R,AutG).
We have G ∼= (AutG)0.
The method of Kac gives H1(R, G), and hence the H1 for all semisimple
R-groups of adjoint type.

Let G be an absolutely simple simply connected R-group.
B-Evenor 2016: H1(R, G), by a method of Borel and Serre.
Gives H1 for all simply connected semisimple R-groups.
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Method of Borel and Serre

G a compact (hence reductive) connected R-group, that is, G(R) is
compact.
T ⊆ G a maximal torus (it is compact).
Then T (R)(2) ⊂ Z1(R, T ) ⊆ Z1(R, G).
The Weyl group W = W (GC, TC) acts on T and on T (R)(2).

Theorem (Borel-Serre 1964)

The inclusion map T (R)(2) ↪→ Z1(R, G) induces a canonical bijection

T (R)(2)/W
∼−→ H1(R, G).
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Method of Borel and Serre for noncompact groups

G is a connected reductive R-group, not necessarily compact.
T0 ⊆ G a maximal compact torus.
T = ZG(T0), which is a maximal torus in G.
T1 ⊂ T is the maximal split subtorus of T .

N = NG(T ), N0 = NG(T0).
T0 ⊆ T ⊆ N0 ⊆ N .
W0 = N0/T .

Twisted action: N0(C) y T (C)

n ∗ t = n · t · γn−1 = ntn−1 · n γn−1.

Lemma

The above twisted action induces a well-defined action W0 y H1(R, T ).

In general this action does not preserve [1] ∈ H1(R, T ) and hence does not
preserve the group structure in H1(R, T ).
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Borel-Serre for noncompact groups (cont.)

Theorem (B. 1988)

The inclusion map T ↪→ G induces a bijection

H1(R, T )/W0
∼−→ H1(R, G).

My co-author Willem de Graaf has implemented this on a computer. For a
connected reductive group G (given by its Lie algebra in gl(n,R)) he can
compute a list of representatives z1, . . . , zm of all cohomology classes.
Moreover, for a given cocycle c ∈ Z1(R, G), he can determine (using
computer) to which of zi it is cohomologous and find g ∈ G(C) such that

zi = g · c · ḡ−1.

Furthermore, using nonabelian H2, he can construct a list z1, . . . , zm also
for a not necessarily connected reductive R-group.
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Borel-Serre for A`

When G is a compact simple group of type A` (that is, isogenous to
SU`+1), the group W0 = W has order (`+ 1)!. The amount of
calculations grows rapidly when ` grows!

By combining the method of Borel and Serre and the method of Kac, we
construct a subset

Ξ ⊂ H1(R, T )

such that the inclusion map T ↪→ G induces a bijection

Ξ/F0
∼−→ H1(R, G),

where F0 is a finite group acting on Ξ isomorphic to a subquotient of
Z(Gsc), and hence of small order ≤ #Z(Gsc). Here Gsc is the universal
cover of the commutator subgroup [G,G] of G. For A` we have
#F0 ≤ `+ 1.
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Method of Kac

Let G be an absolutely simple R-group. We assume that G is an inner
form of a compact group, that is, G has a compact maximal torus T .

R = R(GC, TC) is the root system.
S = S(G,T,B) = {α1, . . . , α`} is a system of simple roots (a basis of R),
where B ⊂ GC is a Borel subgroup containing TC.
α0 ∈ R is the lowest root (with respect to S).

D = D(R,S) is the Dynkin diagram of G (with the set of vertices S).
D̃ = D̃(R,S) is the extended Dynkin diagram of G with the set of vertices

S ∪ {α0} = {α0, α1, . . . , α`}.
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Linear relation

There is a unique linear relation

m0α0 +m1α1 + · · ·+m`α` = 0

normalized such that m0 = 1. All coefficients mj are positive integers;
they are tabulated in Bourbaki-Lie Ch. IV,V,VI, and also in books by
Onishchik and Vinberg.

See the extended Dynkin diagrams D̃ with the coefficients mj in the
tables below. The added vertex α0 is painted in black.
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D̃ and mj

A1

1 1

A` (` ≥ 2)
1 1 1 1

1

B` (` ≥ 3)

1

1

2 2 2 2 2

C` (` ≥ 2)
1 2 2 2 2 1

D` (` ≥ 4)

1

1

1

1

2 2 2 2
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E6

1

1

2

2 3 2 1

E7
12

2

34321

E8
1 2

3

465432

F4

12342

G2

123
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Action of C = P∨/Q∨ on D̃

Let G be a simple R-group with a compact maximal torus T . Let Gsc

denote the universal cover of G, and Gad = G/Z(G).
Write T sc ⊂ Gsc for the preimage of T in Gsc, and T ad = T/Z(G) ⊂ Gad.

X = X∗(T ), P = X∗(T sc), Q = X∗(T ad);

X∨ = X∗(T ), Q∨ = X∗(T
sc), P∨ = X∗(T

ad).

Then

Q ⊆ X ⊆ P, Q∨ ⊆ X∨ ⊆ P∨.

The group C := P∨/Q∨ acts on D̃ effectively.

When #C = 2, the nontrivial element of C acts by the unique nontrivial
automorphism of D̃.
In the cases when #C > 2, see the tables below extracted from
Bourbaki-Lie.
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Action of C: A` and D2k

A` , [ω∨1 ] :
1 2 `− 1 `

0

D` for ` even

[ω∨1 ] :

0

1

`− 1

`

2 3 `− 2
[ω∨`−1] :

0

1

`− 1

`

2 3 `− 2
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Action of C: D2k+1 and E6

D` for ` odd, [ω∨`−1] :

0

1

2 `− 2

`− 1

`

E6 , [ω∨1 ] : 1

6

2 3 4 5

0
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Kac labelings and the theorem of Kac

Definition

A Kac labeling of an extended Dynkin diagram D̃ is a family of numerical
labels q = (q0, q1, . . . , q`) with qj ∈ Z≥0 such that

m0q0 +m1q1 + · · ·+m`q` = 2.

Let K(D̃) denote the set of Kac labelings of D̃.

Theorem (Kac 1969)

For a compact simple R-group G = Gc of adjoint type, the set of
isomorphism classes of inner forms of G is in a canonical bijection with the
set of orbits K(D̃)/Aut(D̃).

Theorem (version of the theorem of Kac; B-Timashev 2021)

For G as in the theorem of Kac, the set H1(R, G) is in a canonical
bijection with the set of orbits K(D̃)/C.
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Theorem of Kac: the bijection

We describe the bijection in the theorem of Kac.
Write D̃ = D̃(GC, TC, B). Recall that for j = 1, . . . , `,

αj ∈ S ⊂ R, αj : TC → C× .

The simple roots αj constitute a basis of Q = X∗(T ).

For q ∈ K(D̃), let tq ∈ T (C) be the element such that

αj(tq) = (−1)qj for j = 1, . . . , `.

Then
t2q = 1, tq ∈ T (C)(2) = T (R)(2) ⊂ Z1(R, G).
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Theorem of Kac: the bijection (cont.)

Let G = Gc be a compact group. We write

Gc = (GC, σc),

where σc is the complex conjugation in GC. We set

Gq = tqGc = (GC, σq), where σq = inn(tq) ◦ σc .

To q ∈ K(D̃) we associate the inner twisted form Gq of Gc. This is the
bijection in the theorem of Kac.

To q ∈ K(D̃) we associate [tq] ∈ H1(R, Gc). This is the bijection in our
version of the theorem of Kac.
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Non-adjoint simple groups

Let G be an (almost) simple R-group (not necessarily adjoint) having a
compact maximal torus T . By a version of the theorem of Kac, we may
write G = Gq := tqGc, where Gc is a compact group. Write X = X∗(T ).

We write G = G(D̃,X, q).

Let λ ∈ X := X∗(T ). We may write

λ =
∑̀
j=1

cjαj ,

where αj are the simple roots and where cj ∈ Q. For a Kac labeling
p = (pj), we set

〈λ, p〉 =
∑

cj pj ∈ Q.

If λ ∈ Q = X∗(T ad), then cj ∈ Z for all j = 1, . . . , `, and therefore
〈λ, p〉 ∈ Z. Thus for λ ∈ X, the class

〈λ, p〉+Z ∈ Q/Z

depends only on the class of λ in X/Q.
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The set K(D̃,X, q)

We define a subset K(D̃,X, q) ⊆ K(D̃) as follows:

(∗) K(D̃,X, q) =
{
p ∈ K(D̃) | 〈λ, p〉 ≡ 〈λ, q〉 (mod Z) ∀[λ] ∈ X/Q

}
or, equivalently, this congruence must hold for a set of generators of the
finite abelian group X/Q.

To compute 〈λ, p〉 for a set of generators of X/Q, it suffices to know the
coefficients cj for a set of generators of the finite abelian group
P/Q ⊇ X/Q. One can find these coefficients in Bourbaki-Lie; see also the
tables below.
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Coefficients cj on Dynkin diagrams

A1 ω1:
1
2

A` (` ≥ 2) ω1:
`
`+1

`−1
`+1

2
`+1

1
`+1

B` (` ≥ 3) ω`:

1
2

2
2

3
2

`−2
2

`−1
2

`
2

C` (` ≥ 2) ω1:
0 0 0 0 1

2
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Coefficients cj on Dynkin diagrams (cont.)

D` (` ≥ 4)

ω` :

1
2

`−2
2

`−2
4

`
4

2
2

3
2

`−3
2

ω1 :

0

1
2

1
2

0 0 0 0

E6 ω1:
1
3

0

2
3

1
3

2
3

E7 ω7: 0

1
2

01
2
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H1(R, G) via Kac labelings

The group
F = X∨/Q∨ ⊆ P∨/Q∨ = C

acts on D̃ and K(D̃) via C.

Theorem (B-Timashev 2021)

Let G = Gq be an absolutely simple R-group (not necessarily compact or
adjoint) having a compact maximal torus T .

(i) The group F , when acting on K(D̃), preserves the subset K(D̃,X, q).

(ii) There is a canonical bijection

K(D̃,X, q)/F
∼−−→ H1(R, Gq)

sending p = q to [1] ∈ H1(R, Gq).
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H1(R, G): the bijection

Write D̃ = D̃(GC, TC, B), t = LieTC. Recall that for j = 1, . . . , `,

αj ∈ S ⊂ R, αj : TC → C×, dαj : t→ C.

For
G = Gq := tqGc and p ∈ K(D̃,X, q),

let xq, xp ∈ t be such that

dαj(xq) = iqj/2, dαj(xp) = ipj/2 for j = 1, . . . , `.
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H1(R, G): the bijection (cont.)

Consider the scaled exponential map

E : t→ T (C), x 7→ exp 2πx for x ∈ t

and set
tp,q = E(xp − xq) ∈ T (C).

One can show that, since p ∈ K(D̃,X, q), we have t2p,q = 1, whence

tp,q ∈ Z1(R, T ) ⊆ Z1(R, Gq).

To p ∈ K(D̃,X, q) we associate [tp,q] ∈ H1(R, Gq).
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Outer form of a compact group

The case when an absolutely simple R-group G
is an outer form of a compact group:

similarly, but one should use
the twisted affine Dynkin diagrams,
see below.
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Twisted affine Dynkin diagrams and the coefficients mj

2A2

2 4

2A2` (` ≥ 2)
2 4 4 4 4 4 4

2A2`−1 (` ≥ 3)

2

2

4
4 4 4 4 2

2D`+1 (` ≥ 2)
2 2 2 2 2 2

2E6

2 4 6 4 2
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Coefficients cj on twisted Dynkin diagrams

2A2`−1 (` ≥ 3) ω̄1:

0

1
2

2D`+1 (` ≥ 2) ω̄`:
1
2

2
2

`−2
2

`−1
2

`
2
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Semisimple groups and reductive groups

The case when G is semisimple: see B-Timashev 2021.
The case when G is reductive: see B-Timashev 2021 arXiv.
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Example

G = PGO12 := (SO12)ad of type D6 .
The extended Dynkin diagram with the coefficients mj :

1

1

1

1

2 2 2

The Kac labelings:

K(D̃) =

{
q = (q0, q1, . . . , q6)

∣∣∣∣ 6∑
j=0

mjqj = 2

}
.
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Inner forms of PGO12

K(D̃) :

2
0 000

0
0

0
2 000

0
0

0
0 000

2
0

0
0 000

0
2

1
1 000

0
0

0
0 000

1
1

1
0 000

1
0

0
1 000

0
1

1
0 000

0
1

0
1 000

1
0

0
0 100

0
0

0
0 010

0
0

0
0 001

0
0

Inner forms of G = PGO12:

K(D̃)/Aut(D̃) :

2
0 000

0
0

1
1 000

0
0

1
0 000

1
0

0
0 100

0
0

0
0 010

0
0

PGO12 PGO10,2 PGO∗12 PGO8,4 PGO6,6

PGO∗12 is the quaternionic real form of PGO12.
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0
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The Galois cohomology of G = PGO12

Action of C ' Z/2Z×Z/2Z

[ω∨1 ] :

0

1

5

6

2 3 4
[ω∨5 ] :

0

1

5

6

2 3 4

H1(R, G) ∼= K(D̃)/C.

K(D̃)/C :

2
0 000

0
0

1
1 000

0
0

1
0 000

1
0

1
0 000

0
1

0
0 100

0
0

0
0 010

0
0

PGO∗12 PGO∗12

The neutral element is 2
0 000

0
0 .

Similarly, H1(R, Gq) ∼= K(D̃)/C for any q ∈ K(D̃), but now the neutral
element is the C-orbit of q.
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Example: SO8,4

G = SO(8, 4), q = 0
0 100

0
0 , X/Q =

{
0, [ω1]

}
. The coefficients cj for ω1

are:

ω1 :

0

1
2

1
2

0 0 0 0

We have

K(G,X, q) =
{
p ∈ K(D̃) | 〈ω1, p〉 ≡ 〈ω1, q〉 (mod Z)

}
=
{
p ∈ K(D̃) | 1

2p`−1 + 1
2p` ≡

1
2q`−1 + 1

2q` (mod Z)
}

=
{
p ∈ K(D̃) | p`−1 + p` ≡ q`−1 + q` (mod 2)

}

K(D̃,X, q) :

2
0 000

0
0

0
2 000

0
0

0
0 000

2
0

0
0 000

0
2

1
1 000

0
0

0
0 000

1
1

0
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0
0

0
0 010

0
0

0
0 001

0
0
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Example: SO8,4 (cont.)

F = X∨/Q∨ is of order 2 and is generated by [ω∨1 ], which acts on D̃ as
follows:

[ω∨1 ] :

0

1

5

6

2 3 4

H1(R,SO8,4) ∼= K(D̃,X, q)/F :

2
0 000

0
0

0
0 000

2
0

1
1 000

0
0

0
0 000

1
1

0
0 100

0
0

0
0 010

0
0

0
0 001

0
0

The neutral element: the class of q = 0
0 100

0
0 .

#H1(R,SO8,4) = 7.
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Example: SO∗12

G = SO∗12, q = 1
0 000

1
0 .

K(D̃,X, q) : 1
0 000

1
0

0
1 000

0
1

1
0 000

0
1

0
1 000

1
0

H1(R,SO∗12) ∼= K(D̃,X, q)/F : 1
0 000

1
0

1
0 000

0
1

The neutral element: the class of q = 1
0 000

1
0 .

#H1(R,SO∗12) = 2.
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