GALOIS COHOMOLOGY
OF A REAL REDUCTIVE GROUP

Mikhail Borovoi, Tel Aviv University

Workshop “Arithmetic Aspects of Algebraic Groups”
Banff, June 14, 2022

Joint work with Dmitry A. Timashev, Moscow

L s i 2 /43



Thank you for inviting me to give a talk in this workshop.



RR-groups

An R-group is a linear algebraic group over R.



RR-groups
An R-group is a linear algebraic group over R.

I' = Gal(C/R) = {1,~}, where  is the complex conjugation.
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RR-groups

An R-group is a linear algebraic group over R.

I' = Gal(C/R) = {1,~}, where  is the complex conjugation.

For an R-group G, the Galois group I acts on G(C), and G(C)' = G(R).
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Abelian I'-cohomology

Let A be a I'-module, that is, an abelian I'-group written additively. We
write
H'A = HYT, A).
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Abelian I'-cohomology

Let A be a I'-module, that is, an abelian I'-group written additively. We
write
H'A = HYT, A).

Recall:
o Z'A={ac A|Ya=—a},
e BlA={%-d |d € A} C 7! A,
o H'A=7'A/BA.
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Abelian I'-cohomology

Let A be a I'-module, that is, an abelian T'-group written additively. We
write

H'A = HYT, A).

Recall:
o Z'A={ac A|Ya=—a},
e BlA={%-d |d € A} C 7! A,
o H'A=7'A/BA.

For an R-torus T, we write

H'(R,T) = H' (T, T(C)).
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HY(R,T)

Notation:
For an R-torus T', we write

o X*(T') = Hom(T¢, Gm,c) (the character group),
o X,(T) = Hom(Gm ¢, Tc) (the cocharacter group).
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HY(R,T)

Notation:
For an R-torus T', we write

o X*(T') = Hom(T¢, Gm,c) (the character group),
o X,(T) = Hom(Gm ¢, Tc) (the cocharacter group).

Proposition (B-Timashev 2021 arXiv)

Let T' be an R-torus. The I'-equivariant homomorphism
X«(T) = T(C), (u: C* — T((D)) — v(—1)

induces a canonical isomorphism

H'X,(T) = HY(R, T).
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Notation: For an R-torus T,
e Ty is the maximal compact (anisotropic) subtorus,
@ T3 is the maximal split subtorus.

We have H'(R, T}) = {1} (easy; Theorem 90).
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Notation: For an R-torus T,
e Ty is the maximal compact (anisotropic) subtorus,
@ T3 is the maximal split subtorus.

We have H'(R, T}) = {1} (easy; Theorem 90).

Write
T(R)? ={te T(R) | t* =1}.

For t € T(R)® we have t - 7t = t?> = 1, whence 7t = t~'. Thus
T(R)? c ZY(R,T),
and we have a canonical homomorphism

TR)® - HY(R,T), t~ [t].
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Notation: For an R-torus T,
e Ty is the maximal compact (anisotropic) subtorus,
@ T3 is the maximal split subtorus.

We have H'(R, T}) = {1} (easy; Theorem 90).

Write
T(R)? ={te T(R) | t* =1}.
For t € T(R)® we have t - 7t = t?> = 1, whence 7t = t~'. Thus
T(R)? c ZY(R,T),
and we have a canonical homomorphism

T(R)? — HY(R,T), t~ 1]

Lemma (B. 1988)

The above homomorphism induces isomorphisms
T(R)® /Ty (R)® —H' (R, T);
To(R)®/(To(R)® N Ty (R)®)) ——H'(R, T).
D June 11, 2022 6/43




Nonabelian Galois cohomology

Let A be a I'-group (not necessarily abelian). By definition,

Z'A={acA|Ya=a"'}.
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Nonabelian Galois cohomology

Let A be a I'-group (not necessarily abelian). By definition,

Z'A={acA|Ya=a"'}.

The group A acts on Z'A on the left by
dxa=d-a-(Vd)" ford € A, acZ'A.

We set
H'A=7'4/A.
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Nonabelian Galois cohomology

Let A be a I'-group (not necessarily abelian). By definition,

Z'A={acA|Ya=a"'}.

The group A acts on Z'A on the left by
dxa=d-a-(Vd)" ford € A, acZ'A.
We set
H'A=7'4/A.
If G is an R~group, then G(C) is a I'-group, and we set

H'Y(R,G) = H' (I, G(0)).
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Using Galois cohomology to classify real orbits

G is an R-group acting on an R-variety V.
O is a I'-stable G(C)-orbit in V(C).
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Using Galois cohomology to classify real orbits

G is an R-group acting on an R-variety V.
O is a I'-stable G(C)-orbit in V(C).

Problem: Classify real orbits in O, that is, G(R)-orbits in O N V(R).
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Using Galois cohomology to classify real orbits

G is an R-group acting on an R-variety V.
O is a I'-stable G(C)-orbit in V(C).

Problem: Classify real orbits in O, that is, G(R)-orbits in O N V(R).

Using H? (if necessary), we determine whether O has real points, and if
yes, we find such a point zg. Set H = Stabg (o).
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Using Galois cohomology to classify real orbits

G is an R-group acting on an R-variety V.
O is a I'-stable G(C)-orbit in V(C).

Problem: Classify real orbits in O, that is, G(R)-orbits in O N V(R).

Using H? (if necessary), we determine whether O has real points, and if
yes, we find such a point zg. Set H = Stabg (o).

Theorem (Borel-Serre 1964 )

There is a canonical bijection

¢: ker [H' (R, H) — H'(R,G)] — [real orbits in 0].
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Using Galois cohomology to classify real orbits (cont.)

We specify the bijection ¢. Write i: H — G.
Let h € Z1(R, H) be such that i.[h] = [1].
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Using Galois cohomology to classify real orbits (cont.)

We specify the bijection ¢. Write i: H — G.
Let h € Z1(R, H) be such that i.[h] = [1].
Then

h=g ' 7 for some g € G(C).
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Using Galois cohomology to classify real orbits (cont.)

We specify the bijection ¢. Write i: H — G.
Let h € Z1(R, H) be such that i.[h] = [1].

Then
h=g ' 7 for some g € G(C).
Set
Tp =g .
Then

Tz ="g9- 20 =gh-x0 = g- 20 = Th,
that is, z, € ONV(R), and

¢: [h] — G(R) - zp,.
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Using Galois cohomology to classify real orbits (cont.)

We specify the bijection ¢. Write i: H — G.
Let h € Z1(R, H) be such that i.[h] = [1].

Then
h=g ' 7 for some g € G(C).
Set
Tp =g .
Then

Twp ="9-"20 = gh -39 =g - 10 = T},
that is, z, € ONV(R), and

o: [h] — GR) - xp.

Clearly, for calculations we need explicit cocycles representing the
cohomology classes.
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Relation to arithmetic: H! over a number field

Let K be a number field, and G be a connected reductive K-group. The
group HY(K, G) fits into a commutative diagram

H(K,G) ab’ oL, (K,G)

locl lloc

[, HY(K,, G) — > [] HY (K, G)

where H!, (K, G) and H}, (K., G) are certain abelian groups (the abelian
cohomology groups).
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Relation to arithmetic: H! over a number field

Let K be a number field, and G be a connected reductive K-group. The
group HY(K, G) fits into a commutative diagram

H(K,G) ab’ oL, (K,G)

locl lloc

[, HY(K,, G) — > [] HY (K, G)

where H!, (K, G) and H}, (K., G) are certain abelian groups (the abelian
cohomology groups).

Moreover, this commutative diagram identifies H! (K, G) with the fibered
product of H, (K, G) and [ H' (K., G) over [] . H., (K., G) (B.
1998).
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Relation to arithmetic: H! over a number field

Let K be a number field, and G be a connected reductive K-group. The
group HY(K, G) fits into a commutative diagram

H(K,G) ab’ oL, (K,G)

locl lloc

[, HY(K,, G) — > [] HY (K, G)

where H!, (K, G) and H}, (K., G) are certain abelian groups (the abelian
cohomology groups).

Moreover, this commutative diagram identifies H! (K, G) with the fibered
product of H, (K, G) and [ H' (K., G) over [] . H., (K., G) (B.
1998).

We see that half of the problem of computing H' (K, G) is to compute the
H' for a reductive R-group.
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Galois cohomology over R: simple groups

We discuss H' (R, G) for a connected reductive R-group G. First we
consider absolutely simple groups (= simple over C).
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Galois cohomology over R: simple groups

We discuss H' (R, G) for a connected reductive R-group G. First we
consider absolutely simple groups (= simple over C).

Adams and Taibi 2018: H!(R, Q) for “most” of the absolutely simple

R-groups G, but only the cardinalities, which is not sufficient for
applications.
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Galois cohomology over R: simple groups

We discuss H' (R, G) for a connected reductive R-group G. First we
consider absolutely simple groups (= simple over C).

Adams and Taibi 2018: H!(R, Q) for “most” of the absolutely simple
R-groups G, but only the cardinalities, which is not sufficient for
applications.

Let G be an absolutely simple R-group of adjoint type.

Kac 1969: the R-forms of the Lie algebra Lie G.

The same as to compute H (R, Aut G).

We have G = (Aut G)°.

The method of Kac gives H!(RR, G), and hence the H' for all semisimple
RR-groups of adjoint type.
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Galois cohomology over R: simple groups

We discuss H' (R, G) for a connected reductive R-group G. First we
consider absolutely simple groups (= simple over C).

Adams and Taibi 2018: H!(R, Q) for “most” of the absolutely simple
R-groups G, but only the cardinalities, which is not sufficient for
applications.

Let G be an absolutely simple R-group of adjoint type.

Kac 1969: the R-forms of the Lie algebra Lie G.

The same as to compute H (R, Aut G).

We have G = (Aut G)°.

The method of Kac gives H!(RR, G), and hence the H' for all semisimple
RR-groups of adjoint type.

Let G be an absolutely simple simply connected R-group.
B-Evenor 2016: H'(RR, G), by a method of Borel and Serre.
Gives H! for all simply connected semisimple R-groups.
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Method of Borel and Serre

G a compact (hence reductive) connected R-group, that is, G(R) is
compact.

T C G a maximal torus (it is compact).
Then T(R)® c Z'(R,T) C Z' (R, G).
The Weyl group W = W (G, T¢) acts on T and on T(R)®.
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Method of Borel and Serre

G a compact (hence reductive) connected R-group, that is, G(R) is
compact.

T C G a maximal torus (it is compact).
Then T(R)® c Z'(R,T) C Z' (R, G).
The Weyl group W = W (G¢, T¢) acts on T and on T(R)?).

Theorem (Borel-Serre 1964)

The inclusion map T(R)®) — Z!(R,G) induces a canonical bijection

T(R)?/W = HY(R, G).
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Method of Borel and Serre for noncompact groups

G is a connected reductive R-group, not necessarily compact.
Ty € G a maximal compact torus.

T = Z¢(Tp), which is a maximal torus in G.

T1 C T is the maximal split subtorus of T.
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Method of Borel and Serre for noncompact groups

G is a connected reductive R-group, not necessarily compact.
Ty € G a maximal compact torus.

T = Z¢(Tp), which is a maximal torus in G.

T1 C T is the maximal split subtorus of T.

N = Ng(T), No =Ng(Tp).
Ty CT C Ny C N,
Wo = No/T.
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Method of Borel and Serre for noncompact groups

G is a connected reductive R-group, not necessarily compact.
Ty € G a maximal compact torus.

T = Z¢(Tp), which is a maximal torus in G.

T1 C T is the maximal split subtorus of T.

N =Ng(T), No=Ng(Tp).
Ty CT C Ny C N.

Wy = No/T.

Twisted action: No(C) ~ T'(C)

L= ptn=t - ninL.

nxt=n-t-"n”
Lemma

The above twisted action induces a well-defined action Wy ~ H'(R, T). J
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Method of Borel and Serre for noncompact groups

G is a connected reductive R-group, not necessarily compact.
Ty € G a maximal compact torus.

T = Z¢(Tp), which is a maximal torus in G.

T1 C T is the maximal split subtorus of T.

N =Ng(T), No=Ng(Tp).
Ty CT C Ny C N,
Wo = No/T.

Twisted action: No(C) ~ T'(C)

nxt=n-t-Mm t=ntn"t -nIn"L.

The above twisted action induces a well-defined action Wy ~ H'(R, T).

Lemma J

In general this action does not preserve [1] € H'(R,T) and hence does not
preserve the group structure in H (R, T).
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Borel-Serre for noncompact groups (cont.)
Theorem (B. 1988)

The inclusion map T'— G induces a bijection

HY(R,T)/ Wy = HY(R, G).




Borel-Serre for noncompact groups (cont.)

Theorem (B. 1988)

The inclusion map T'— G induces a bijection

HY(R,T)/ Wy = H'(R, G).

My co-author Willem de Graaf has implemented this on a computer. For a
connected reductive group G (given by its Lie algebra in gl(n,R)) he can
compute a list of representatives z1, ..., z,, of all cohomology classes.
Moreover, for a given cocycle ¢ € Z'(R, G), he can determine (using
computer) to which of z; it is cohomologous and find g € G(C) such that

s=g-c gl
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Borel-Serre for noncompact groups (cont.)

Theorem (B. 1988)

The inclusion map T'— G induces a bijection

HY(R,T)/ Wy = H'(R, G).

My co-author Willem de Graaf has implemented this on a computer. For a
connected reductive group G (given by its Lie algebra in gl(n,R)) he can
compute a list of representatives z1, ..., z,, of all cohomology classes.
Moreover, for a given cocycle ¢ € Z'(R, G), he can determine (using
computer) to which of z; it is cohomologous and find g € G(C) such that
Z=g-cg .

Furthermore, using nonabelian H2, he can construct a list Z1y. .., 2m also
for a not necessarily connected reductive R-group.
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Borel-Serre for A,

When G is a compact simple group of type Ay (that is, isogenous to
SUyy1), the group Wy = W has order (£ + 1)!. The amount of
calculations grows rapidly when ¢ grows!
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Borel-Serre for A,

When G is a compact simple group of type A, (that is, isogenous to
SUyy1), the group Wy = W has order (£ + 1)!. The amount of
calculations grows rapidly when ¢ grows!

By combining the method of Borel and Serre and the method of Kac, we
construct a subset

= c HY(R,T)
such that the inclusion map T" < G induces a bijection
E/FD ; Hl(Ra G)7

where Fj is a finite group acting on = isomorphic to a subquotient of
Z(G*), and hence of small order < #Z(G*°). Here G* is the universal
cover of the commutator subgroup [G, G] of G. For Ay we have

LRy <041,
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Method of Kac

Let G be an absolutely simple R-group. We assume that G is an inner
form of a compact group, that is, G has a compact maximal torus 7.
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Method of Kac

Let G be an absolutely simple R-group. We assume that G is an inner
form of a compact group, that is, G has a compact maximal torus 7.

R = R(Gg¢, T¢) is the root system.

S =S(G,T,B) ={ai,...,a} is a system of simple roots (a basis of R),
where B C G is a Borel subgroup containing T¢.
ap € R is the lowest root (with respect to 5).
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Method of Kac

Let G be an absolutely simple R-group. We assume that G is an inner
form of a compact group, that is, G has a compact maximal torus 7.

R = R(Gg¢, T¢) is the root system.

S =S(G,T,B) ={ai,...,a} is a system of simple roots (a basis of R),
where B C G is a Borel subgroup containing T¢.

ap € R is the lowest root (with respect to 5).

D = D(R, S) is the Dynkin diagram of G' (with the set of vertices S).
D = D(R, S) is the extended Dynkin diagram of G with the set of vertices

SU {O&o} = {0&0,0&1, .. .,Ozg}.
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Linear relation
There is a unique linear relation
moog +mioq + -+ +myay =0

normalized such that mg = 1. All coefficients m; are positive integers;
they are tabulated in Bourbaki-Lie Ch. IV,V,VI, and also in books by
Onishchik and Vinberg.
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Linear relation

There is a unique linear relation
moog +mioq + -+ +myay =0

normalized such that mg = 1. All coefficients m; are positive integers;
they are tabulated in Bourbaki-Lie Ch. IV,V,VI, and also in books by
Onishchik and Vinberg.

See the extended Dynkin diagrams D with the coefficients m; in the
tables below. The added vertex ag is painted in black.
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Action of C' = PY/Q" on D

Let G be a simple R-group with a compact maximal torus T'. Let G*¢
denote the universal cover of G, and G* = G/Z(G).
Write T5¢ C G*° for the preimage of T in G¢, and T® = T/Z(G) c G*.
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Action of C' = PY/Q" on D

Let G be a simple R-group with a compact maximal torus T'. Let G*¢

denote the universal cover of G, and G* = G/Z(G).
Write T¢ C G*¢ for the preimage of T in G*¢, and T% = T/Z(G) c G*.

X =XYT), P=X(T*), Q= X*(Tad);
XV =X (T), QY =X.(T*), PY= X*(Tad).

Then
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Action of C'= P¥/QY on D

Let G be a simple R-group with a compact maximal torus T'. Let G*¢
denote the universal cover of G, and G* = G/Z(G).
Write T5¢ C G*° for the preimage of T in G¢, and T® = T/Z(G) c G*.

X — X*(T), P= X*(TSC)’ Q — X*(Tad);
XV =X (T), QY =X, (T*), PY=X./(1T).
Then

The group C := PV/Q" acts on D effectively.

When #C = 2, the nontrivial element of C' acts by the unique nontrivial
automorphism of D.
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Action of C'= P¥/QY on D

Let G be a simple R-group with a compact maximal torus T'. Let G*¢
denote the universal cover of G, and G* = G/Z(G).
Write T5¢ C G*° for the preimage of T in G¢, and T® = T/Z(G) c G*.

X — X*(T), P= X*(TSC)’ Q — X*(Tad);
XV =X (T), QY =X, (T*), PY=X./(1T).
Then

The group C := PV/Q" acts on D effectively.

When #C = 2, the nontrivial element of C' acts by the unique nontrivial
automorphism of D.
In the cases when #C' > 2, see the tables below extracted from
Bourbaki-Lie.
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Action of C': A, and Dy

(-1 el tor-1
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Action of C: Dyr.q and Eg

Dy for £ odd, [w) ,]:

V. 172 3 4N
EG? [wl] C/ \o
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Kac labelings and the theorem of Kac
Definition

A Kac labeling of an extended Dynkin diagram Disa family of numerical
labels ¢ = (o, q1, - - -, q¢) with ¢; € Z>¢ such that

mogo + maqr + - - - + meqe = 2.
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Kac labelings and the theorem of Kac

Definition
A Kac labeling of an extended Dynkin diagram Disa family of numerical
labels ¢ = (o, q1, - - -, q¢) with ¢; € Z>¢ such that

mogo + maqr + - - - + meqe = 2.

Let k(D) denote the set of Kac labelings of D.

Theorem (Kac 1969)

For a compact simple R-group G = G of adjoint type, the set of
isomorphism classes of inner forms of G is in a canonical bijection with the
set of orbits K(D)/Aut(D).
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Kac labelings and the theorem of Kac

Definition
A Kac labeling of an extended Dynkin diagram Disa family of numerical
labels ¢ = (o, q1, - - -, q¢) with ¢; € Z>¢ such that

mogo + maqr + - - - + meqe = 2.

Let k(D) denote the set of Kac labelings of D.

Theorem (Kac 1969)

For a compact simple R-group G = G of adjoint type, the set of
isomorphism classes of inner forms of G is in a canonical bijection with the
set of orbits KC(D)/Aut(D).

v

Theorem (version of the theorem of Kac; B-Timashev 2021)

For G as in the theorem of Kac, the set HY(R, G) is in a canonical
bijection with the set of orbits K(D)/C'.
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Theorem of Kac: the bijection

We describe the bijection in the theorem of Kac.
Write D = D(G¢, Tc, B). Recall that for j =1,...,¢,

O@'ESCR, Oéle@-)CX.

The simple roots a; constitute a basis of @@ = X*(T').
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Theorem of Kac: the bijection

We describe the bijection in the theorem of Kac.
Write D = D(G¢, Tc, B). Recall that for j =1,...,¢,

O@'ESCR, Oéle@-)(DX.
The simple roots a; constitute a basis of @@ = X*(T').

For ¢ € K(D), let ty € T(C) be the element such that

aj(ty) =(=1)% forj=1,... ¢
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Theorem of Kac: the bijection

We describe the bijection in the theorem of Kac.
Write D = D(G¢, Tc, B). Recall that for j =1,...,¢,

O@'ESCR, Ozj:T@—>CX.
The simple roots a; constitute a basis of @@ = X*(T').

For ¢ € K(D), let ty € T(C) be the element such that

aj(ty) =(=1)% forj=1,... ¢
Then
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Theorem of Kac: the bijection (cont.)

Let G = G, be a compact group. We write
G = (GC7 O-C)’
where o, is the complex conjugation in G¢. We set

Gy = +,Gc = (Ge,04), where o, =inn(ty) o 0.
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Theorem of Kac: the bijection (cont.)

Let G = G, be a compact group. We write
G.= (Gg,0¢),
where o, is the complex conjugation in G¢. We set
Gy = +,Gc = (Ge,04), where o, =inn(ty) o 0.

To ¢ € K(D) we associate the inner twisted form G4 of G.. This is the
bijection in the theorem of Kac.
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Theorem of Kac: the bijection (cont.)

Let G = G, be a compact group. We write
G.= (Gg,0¢),
where o, is the complex conjugation in G¢. We set
Gy = +,Gc = (Ge,04), where o, =inn(ty) o 0.

To ¢ € K(D) we associate the inner twisted form G4 of G.. This is the
bijection in the theorem of Kac.

To ¢ € K(D) we associate [ty € HY(R,G.). This is the bijection in our
version of the theorem of Kac.
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Non-adjoint simple groups

Let G be an (almost) simple R-group (not necessarily adjoint) having a

compact maximal torus T'. By a version of the theorem of Kac, we may

write G = G4 i= ¢,G., where G is a compact group. Write X = X*(T).
We write G = G(ﬁ,X, q).
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Non-adjoint simple groups

Let G be an (almost) simple R-group (not necessarily adjoint) having a
compact maximal torus T'. By a version of the theorem of Kac, we may
write G = G4 i= ¢,G., where G is a compact group. Write X = X*(T).
We write G = G(ﬁ,X, q).

Let A € X := X*(T"). We may write

)4
A= Z CjQy,
Jj=1
where «; are the simple roots and where ¢; € Q. For a Kac labeling

p = (pj), we set
) =D cpi Q.
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Non-adjoint simple groups

Let G be an (almost) simple R-group (not necessarily adjoint) having a
compact maximal torus T'. By a version of the theorem of Kac, we may
write G = G4 i= ¢,G., where G is a compact group. Write X = X*(T).
We write G = G(ﬁ,X, q).

Let A € X := X*(T"). We may write

L
A= Z CjQy,
j=1

where «; are the simple roots and where ¢; € Q. For a Kac labeling
p= (b)), we set
) =D cpi Q.
If A € Q = X*(T?Y), then ¢; € Z for all j =1,...,¢, and therefore
(\,p) € Z.. Thus for A € X, the class
A\p)+7ZcQ/Z

depends only on the class of A in X/Q.
] June 11, 2022 26 /43



The set lC(f),X, q)
We define a subset K(D, X, q) C K(D) as follows:
(x) K(D,X,q)={pe k(D) | (\p)=(\gq) (mod Z) Y[\ € X/Q}

or, equivalently, this congruence must hold for a set of generators of the
finite abelian group X/@Q.
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The set IC(IN?,X, q)
We define a subset K(D, X, q) C K(D) as follows:

(x) K(D,X,q)={pe k(D) | (\p)=(\gq) (mod Z) Y[\ € X/Q}

or, equivalently, this congruence must hold for a set of generators of the
finite abelian group X/@Q.

To compute (A, p) for a set of generators of X /@, it suffices to know the
coefficients c; for a set of generators of the finite abelian group

P/Q D X/Q. One can find these coefficients in Bourbaki-Lie; see also the
tables below.
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Coefficients ¢; on Dynkin diagrams

1
Ay w1 o35
A (£>2) w1 @
oM o S e
3 3 g g 3
B¢ (£ >3) we: 2
1
2
0 0 o o 1
C(£>2) wi: 5
o = = =



Coefficients ¢; on Dynkin diagrams (cont.)

Es

=

we

w1

wi:

wr:

=2
4
2 3 =3
2 2 2 -2
2
£
4
1
2
0 0 0 0
1
2
1 2 1 2
3 3 3 3
(@] O
0
1
L0 0
O
1
2
[} = =




HY(R, G) via Kac labelings
The group

acts on D and K(D) via C.

F=XY/Q" C PV/Q"=C



HY(R, G) via Kac labelings
The group

FZXV/QV g PV/QV:C
acts on D and K(D) via C.

Theorem (B-Timashev 2021)

Let G = G, be an absolutely simple R-group (not necessarily compact or
adjoint) having a compact maximal torus T.

(i) The group F', when acting on K(ﬁ) preserves the subset IC(B, X,q).
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H'(R, G) via Kac labelings
The group

F:X\//QV C PV/QV:C
acts on D and K(D) via C.

Theorem (B-Timashev 2021)

Let G = G, be an absolutely simple R-group (not necessarily compact or
adjoint) having a compact maximal torus T.

(i) The group F', when acting on K(ﬁ) preserves the subset IC(B, X,q).
(i) There is a canonical bijection

K(D, X,q)/F == H'(R,G,)

sending p = q to [1] € HY(R, G,).
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HY(R, G): the bijection
Write D = D(Gg, Tc, B), t = Lie Tg. Recall that for j =1,...,7,
aj€e SCR, aj:Teg—C*, doj:t—C



HY(R, G): the bijection
Write D = 5(G@,T@,B), t = LieTg. Recall that for j =1,...

aje SCR, aj:T¢—C*, daj:t—C.
For B
G=Gy=4,G. and peK(D,X,q),
let x4, ), € t be such that

daj(zg) = 1q5/2, doj(xp) =1ipj/2 forj=1,... ¢
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HY(R, G): the bijection (cont.)
Consider the scaled exponential map

E:t—=>T(C), xr—exp22mx forxzet

and set
tpg = E(xp —xq) € T(C).
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HY(R, G): the bijection (cont.)
Consider the scaled exponential map
E:t—=>T(C), xr—exp22mx forxzet
and set
tpg = E(xp — xq) € T(C).
One can show that, since p € K(D, X, q), we have t2 , =1, whence

tpq € ZYR,T) C Z (R, G,).
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HY(R, G): the bijection (cont.)

Consider the scaled exponential map

E:t—=>T(C), xr—exp22mx forxzet

and set
tpg = E(xp —xq) € T(C).

i ) 2 _
One can show that, since p € K(D, X, q), we have t; , = 1, whence

tpq € ZYR,T) C Z (R, G,).

To p € K(D, X, q) we associate [tp.q € HY(R,Gy).
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QOuter form of a compact group

The case when an absolutely simple R-group G
is an outer form of a compact group:

similarly, but one should use

the twisted affine Dynkin diagrams,
see below.
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Twisted affine Dynkin diagrams and the coefficients m;

9 2 4
Ao (==
9 2 4 4 4 4 4 4
A (£ > 2) 0 00— —0O—0=r0
2
9 4 4 4 4 2
Agr—1 (£ > 3) 4p—0—0—m —0—0==0
2
9 2 2 2 2 2 2
Dey1 (£>2) &0 0 —0—0==0
2 4 6 4 2
2Eq 0 —Oo—<t0—0
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Coefficients c; on twisted Dynkin diagrams

A1 (£ >3) @1
0
12 2 1
"Dy (£>2) Wy —— b3

Qo=



Semisimple groups and reductive groups

The case when G is semisimple: see B-Timashev 2021.
The case when G is reductive: see B-Timashev 2021 arXiv.
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Example

G =PGOqy = (Solg)ad of type Dg.
The extended Dynkin diagram with the coefficients m;:
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Example

G =PGOqy = (Solg)ad of type Dg.
The extended Dynkin diagram with the coefficients m;:

The Kac labelings:

K(D) = {q = (q0,q1,---,96)

6
Z m;q; = 2}.
j=0
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Inner forms of PGOq5

2 0 o0 0 0 2 0 0
00005 50005 4000, 000,

. 1.0 0 1 1.1 0.0 1. 0 0 1
K(D) : 1000 0007 5000, 1000 0007 1000,

0 0 O 0 O 0
01005 (0105 001,




Inner forms of PGOq5

2 0 o0 0 O 2 0 0
0000y 50004 40004 5000,

. 1.0 0 1 1.1 0 0 1. 0 0. 1
K(D) : 10005 50007 (000, 10007 000, 000

0 0 O 0 O 0
01005 (0105 001,

Inner forms of G = PGOns:

2 0 1 0 1 1 0 0 0 0
. - 000 000 000 100 010
K(D)/Aut(D): ~° 0 PO oo oo 0o
PGO1; PGOys PGOY, PGOss PGOgg

PGOJ, is the quaternionic real form of PGOqs.
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The Galois cohomology of G = PGOq5

Action of C ~ 7Z./27. x 7./27.

o k5 oe* *o5
3 4 2 3
[Wl] ': ) [WEY]
1 " 1 6
o ~



The Galois cohomology of G = PGOq5

Action of C ~ 7Z./27. x 7./27.

0, X 00~ 55
3 2 3
[wy]: [wy]:
»
2 6 1, PRY

0 0 0 O 0
0010

0 1
0000 0100

2 0 1

000 000 000

Kyc. 00 e v
PGOY, PGO%L

The neutral element is (2)0008.
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The Galois cohomology of G = PGOq5

Action of C ~ 7Z./27. x 7./27.

k5 0e* 5
2 3
\ Vv
! [ws

6 1
A S x

2 0 1 0 1 1 1 0 0 0 O 0

O0000 10000 00000 O0001 O1000 0010O
* *

PGO%, PGOI,

The neutral element is 30008.

Similarly, HY(R, G,) = K(D)/C for any q € K(D), but now the neutral
element is the C-orbit of q.
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Example: SOg 4
G =S0(8,4), q= 81008, X/Q = {0, [wl]}. The coefficients ¢; for w;
are: )

2

w1

0 3
We have

K(G,X,q) = {p € K(D) | (w,p) = (w1,q) (mod Z)}
={peK(D) | tper + ipe = Sqo-1 + 1q¢  (mod Z)}
={peKD) | pr_1 +pr = qe—1 +q (mod 2)}
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Example: SOg 4

G =S0(8,4), q= 81008, X/Q = {0, [wl]}. The coefficients ¢; for w;

are:

w1

1
2

We have
K(G,X,q) = {p € K(D) | (wi,p)

2 0
0000O

K(D,X.q): 1000

0 0
01000

1
2

= (w1,q) (mod Z)}
={peKD) | tper +ipe=Ltap1 + g (mod Z)}
={peK(D) | pr-1+p=q-1+a

(mod 2)}
0,70 0. 2 0. 0
5000 (0005 (000,
0,01
000

0 0 0 0
00105 (001,

June 11, 2022
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Example: SOg4 (cont.)

F =XY/QV is of order 2 and is generated by [w)], which acts on D as
follows:

---a°
(v}
w
I

Jwr]:

S SRS
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Example: SOg4 (cont.)

F =XY/QV is of order 2 and is generated by [w)], which acts on D as
follows:

0 5
vi SN2 3 4 /X
lwil: i
X ¥
1 6
2.0 0. 2
5000 000
H'(R,S0s4) = K(D, X,q)/F: }0008 8000%

0 0 0 0 O 0
0100 00100 0001,
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Example: SOg4 (cont.)

F =XY/QV is of order 2 and is generated by [w)], which acts on D as

follows:

0 5

vi SN2 3 4 /X

[wy']: \ i

3 ¥
1 6

2.0

5000

H'(R,SO0g4) = K(D,X,q)/F: }0008

0 0
0100

The neutral element: the class of ¢ = 81008.

#H'(R,S0s,4) = 7.
]

0 2
OOOO0

0 1
0000

0 0 O 0
00105 (001,

June 11, 2022
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Example: SO7,

G:SOT% q= éoooé-

K(D, X, q) :

1 o . 1 O
00004 10004 ;000

00001
1000



Example: SO7,

G =850, q= éoooé

K(D, X, q)

1 1 0 0 1 0
00005 ;000 000

0 1
1000

0

H'(R,S0%,) = K(D, X,q)/F: Lol booo’



Example: SO7,

11
G =807y, q= ;000,.

KD,X,q):  goooy Jo00? 2000?00

H'(R,SO%,) = K(D, X, q)/F: ool tooo®

The neutral element: the class of ¢ = éooo(l).
#H'(R,SO3,) = 2.
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