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Recall: �  

‣ �  has a global structure 

Recall: �  (Equality) 

Equality has large 0-monochromatic rectangles 

Question: �  �  �  has a large monochromatic rectangle?

D( ⋅ ) ⟷ χ( ⋅ )

D(M) = O(1) ⟹ M

R(M) ⟷ χ(M)

R(M) = O(1) ⟹ M

1

1

1

1

1
10



CONJECTURE I

Conjecture I: For a Boolean matrix �  of size � , if 

�  for some constant �, then �  has a monochromatic 

rectangle of size � , where �  is a constant depending 

on �.   

M n × n
Rϵ(M) ≤ c c M

δcn × δcn δc

c



CONJECTURE I: GENERAL

Conjecture [CLV19]: For a Boolean matrix �  of size � , if 

�  for some constant �, then �  has a monochromatic 

rectangle of size � , where  � .

M n × n
Rϵ(M) ≤ c(n) c M

δcn × δcn δc = 2−O(c(n))

ℙℕℙCC



CONJECTURE I

Conjecture I: For a Boolean matrix �  of size � , if 

�  for some constant �, then �  has a monochromatic 

rectangle of size � , where �  is a constant depending 

on �.   

M n × n
Rϵ(M) ≤ c c M

δcn × δcn δc

c

‣ End goal: fully characterize randomized protocols  



CONJECTURE I

Conjecture I: For a Boolean matrix �  of size � , if 

�  for some constant �, then �  has a monochromatic 

rectangle of size � , where �  is a constant depending 

on �.   

M n × n
Rϵ(M) ≤ c c M

δcn × δcn δc

c

‣ End goal: fully characterize randomized protocols  

‣ Understand the “easy” randomized protocols 



CONJECTURE I

Conjecture I: For a Boolean matrix �  of size � , if 

�  for some constant �, then �  has a monochromatic 

rectangle of size � , where �  is a constant depending 

on �.   

M n × n
Rϵ(M) ≤ c c M

δcn × δcn δc

c

‣ End goal: fully characterize randomized protocols  

‣ Understand the “easy” randomized protocols 

‣ A barrier for the open problem of [BFS86, GPW18]:  

� ?𝔹ℙℙCC ⊂ ℙℕℙCC



CONJECTURE I

Conjecture I: For a Boolean matrix �  of size � , if 

�  for some constant �, then �  has a monochromatic 

rectangle of size � , where �  is a constant depending 

on �.   

M n × n
Rϵ(M) ≤ c c M

δcn × δcn δc

c

‣ End goal: fully characterize randomized protocols  

‣ Understand the “easy” randomized protocols 

‣ A barrier for the open problem of [BFS86, GPW18]:  

‣ If Conjecture I is false, then there is a separation between these 
classes. 
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Theorem [HHH21]: Let �  be a Boolean matrix of size � .  
If � , then �  has a monochromatic rectangle of size 
� , where �  depends on �. 

‣ This theorem covers all the matrices for which the 
randomized protocol with constant complexity uses 
hashing technique. 

‣ In particular, this includes � , Hamming-Distance-� for 
constant �.
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Theorem [HHH21]: Let �  be a Boolean matrix of size � .   
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Proof idea: 
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Barrier theorem [HHH21]: For all sufficiently large �, there exists an �   

Boolean matrix �  s.t. 

(1)  Every �  submatrix �  of �  has � . 

(2)  �  doesn’t contain a monochromatic rectangle of size � . 

� , �  is a random graph. 

‣ [HHH21]: Barrier theorem refuted the Probabilistic Universal Graph 
Conjecture of Harms, Wild, and Zamaraev [HWZ21]. 

‣ [HH21]: Barrier theorem + counting argument refuted the Implicit 
Graph Conjecture [HWZ21].

n n × n
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Idea: Study randomized CC via matrix norms 

1. Trace norm, � , where �  are eigenvalues of �  

2. �  - norm �  � - norm �  �  - norm (Schur norm) 

‣ Approximates of these norms lower bound �  

‣ �  

∥M∥tr :=
k

∑
i=1

|λi | λi M

μ ⟷ ν ⟷ γ2

R(M)

∥M∥∘,ϵ = min
M′ �

{∥M′ �∥∘ : ∀(x, y) |M(x, y) − M′�(x, y) | ≤ ϵ and M′� is real-valued}
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CONJECTURE I: TRACE NORM

�                        �  is � -sized 

Strong Conjecture I: �  �  has a mon. rec. of size �  

Conjecture II: �  �  has a mon. rec. of size �  

Theorem [HHH21]: Conjecture II holds for matrices of form � , 

where  �  and �  is any finite group.  

Rϵ(M) ≥ log
∥M∥tr,ϵ

n
M n × n

∥M∥tr,ϵ

n
≤ c ⟹ M δcn × δcn

∥M∥tr

n
≤ c ⟹ M δcn × δcn

F(x, y) = f(y−1x)

f : G → {0,1} G
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Conjecture II: �  �  has a mon. rec. of size �  

Conjecture II (graph theoretic): If a bipartite graph has small graph 
energy, then it satisfies the Strong Erdős-Hajnal property.

∥M∥tr

n
≤ c ⟹ M δcn × δcn

Matrix Bipartite graph

Trace norm

Monochromatic rectangle

Graph energy

Complete bipartite subgraph*
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Recall: � , 

� . 

Conjecture I (Equivalent): �  �  has a mon. rec. of size � . 

∥M∥μ = min {∑
i

|αi | : M = ∑
i

αiRi}
where Ri are rank-1 matrices and αi ∈ ℝ

∥M∥μ,ϵ ≤ c ⟹ M δcn × δcn

�R(M) = O(∥M∥2
μ,ϵ)�R(M) = Ω(log ∥M∥μ,ϵ) and

�R( ⋅ ) ⟷ ∥ ⋅ ∥μ,ϵ
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Theorem [HHH21]: Conjecture III holds for matrices of form � , 

where �   and �  is any finite group. 

F(x, y) = f(y−1x)

f : G → {0,1} G
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Theorem [HHH21]: Conjecture III is equivalent to Conjecture    .
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