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Sign Matrices as Binary Concept Classes

Matrix Axxy with £1 entries. Entry A,, can represent:
e Person x likes/dislikes movie y.
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Geometric Representations

e Y = {all restaurents}, modeled by

(food quality, service quality, price) = (y1, y2, y3).
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Geometric Representations

e Y = {all restaurents}, modeled by

(food quality, service quality, price) = (y1, y2, y3).

e X = {people}, modeled by numerical features
(x1, %2, X3, Xa).
o x likes y if
X1y1 + x2y2 + X3y3 > X4.

Representation of this concept in R*:

Axy = sgn ((X17X27X37X4)7 (}/1,}/2,)/?” _1)>
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Sign-rank

Let S9! denote the unit sphere in RY.
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Sign-rank
Let S9! denote the unit sphere in RY.

Definition (Sign-rank)
Sign-rank of a sign-matrix Axxy is the smallest d such that
there are ¢ : X — S9 L and ¢ : ) — S971 with

Axy = Sgn<¢(x)7 ¢(Y)>

go_

Ay =1 = 1(y) € {z | (z,¢(x)) > 0}.
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Margin
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Margin

Definition (Margin)

e Margin of such a representation:

inf (¢ ¢y ))l-

e Margin of A denoted by m(A): Largest possible margin over

all representations in all dimensions. 63
v




Learning Theory: Low complexity concept classes

e Bounded VC-dimension (PAC learnable).

e Bounded Sign-rank (Linearization/Kernel Trick, low

dimensional).

e Margin bounded away from zero (amenable to algorithms
such as perceptron, Support vector machines).
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Sign-rank Lower Bounds: What do we know?
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Known Lower-bound Techniques

e Counting argument [AFR86, AMR16]: For d < 5, there are
only 2971°8(n) matrices of sign-rank d (out of all on sign

matrices).
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Known Lower-bound Techniques

e Counting argument [AFR86, AMR16]: For d < 5, there are
only 2971°8(n) matrices of sign-rank d (out of all on sign
matrices).

e Hence, most sign matrices have large sign-rank.

e Based of works of Milnor, Thom, Warren in 1960’s on the
number of connected components of real algebraic varieties.
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VC dimension

Theorem (VC dimension [Paturi-Simon 85])
rks (A) > VC(A). J

10/33



Average Margin

e Forster based methods: “Small sign-rank = Large average

margin”

mavg(A) S rki(A)

(Refinements of Forster’s original bound were later
developed by Linial, Shraibman, Sherstov, Razbrov, etc).
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Average Margin

e Forster based methods: “Small sign-rank = Large average
margin”

maT(A) < rky(A).

(Refinements of Forster’s original bound were later

developed by Linial, Shraibman, Sherstov, Razbrov, etc).

e All these refinements prove upper-bounds on m2V&(A).
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Large Monochromatic rectangles

Theorem (Monochromatic rectangle [APPRRS 2005])
Ifrk1(A) = d, then Anx, contains an Qd—ﬂl X zd—’?H
monochromatic rectangle.
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Large Monochromatic rectangles

Theorem (Monochromatic rectangle [APPRRS 2005])
Ifrki(A) = d, then A, contains an 5ig X 5
monochromatic rectangle.

By looking at all submatrices of A, and the size of the largest
monochromatic rectangles in them, we define rect(A), and get

log, (rect(A)) < rk+(A).
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A comparison

Known lower bound techniques: rky (A) is (essentially) at least

VC(A), m2'8(A)~1, log, (rect(A)).
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A comparison

Known lower bound techniques: rky (A) is (essentially) at least

VC(A), m2'8(A)~1, log, (rect(A)).

Theorem (HH,Hatami,Pires, Tao,Zhao'22)

VC(A) < m*8(A)~! < rect(A).

e There exist n X n sign-matrices with rect(A) = O(1) and
rk (A) > (1),

If the monochromatic rectangle ratio cannot provide a
super-constant lower bound for the sign-rank of a matrix, then
the other two methods will fail as well.
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Theorem (HH,Hatami,Pires, Tao,Zhao'22 (recall))

There exist n x n sign-matrices with rect(A) = O(1) and
rk (A) > n2),

The proof is by a counting argument (construct a large family of
matrices with rect(A) = O(1)).
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Theorem (HH,Hatami,Pires, Tao,Zhao'22 (recall))

There exist n x n sign-matrices with rect(A) = O(1) and
rk (A) > n2),

The proof is by a counting argument (construct a large family of
matrices with rect(A) = O(1)).

Construct an explicit sequence of sign-matrices A, with

rect(A,) = O(1) and limrky(A,) = .
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Two open problems
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Problem |: Semi-algebraic matrices

16/33



Semi-algebraic matrices

Definition (Semi-algebraic matrix of complexity d)

e Row and column sets X’ and ) are subsets of RY.
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Semi-algebraic matrices

Definition (Semi-algebraic matrix of complexity d)
e Row and column sets X’ and ) are subsets of RY.

e The entries are defined by at most d polynomial
equality /inequalities in coordinates of x and y.

e Each polynomial is of degree at most d.

Matrices of sign-rank d are semi-algebraic: 27:1 xiyi > 0.
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e Most natural geometric graphs are semi-algebraic: Interval
graphs, unit distance graphs, Intersecting segments, disks,
and regions.
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e Most natural geometric graphs are semi-algebraic: Interval
graphs, unit distance graphs, Intersecting segments, disks,
and regions.

e Works of Alon, Pach, Fox, Suk,... Breakthrough of Guth
and Katz on Erdos Distance Problem....

o Tools: Generalization of properties of low sign-rank matrices
to semi-algebraic settings (e.g. large monochromatic
rectangles, strong regularity lemmas) + tools from algebraic

geometry.
Recall: Matrices of sign-rank d are semi-algebraic. J
Semi-algebraic = Bounded Sign-Rank? J
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A Simple Reformulation

Problem (Reformulation of Sign-rank =’ Semi-algebraic)

Is it true that for every d, there is ¢ € N such that

rky (A), tki(B) < d = k(A A B) < ¢g?
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A Simple Reformulation

Is it true that for every d, there is ¢ € N such that

rki(A),tky(B) < d = 1tk (AN B) < cg?

e Non-trivial for d = 2.
e Open for d > 3.
e Using Forster's method [Bun, Mande, Thaler'19]:

Cq > 2|0€2(d)_
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Second Reformulation

Definition (Intersection of Two Half-spaces)
For [x1,x] € X C RY x RY and y € Y C RY, define

1 y€eH,NH
Ta([x1, %], y) = SR
—1 otherwise

where
H, = {z € R? | (z,x) > 0}.
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Second Reformulation

Definition (Intersection of Two Half-spaces)
For [x1,x] € X C RY x RY and y € Y C RY, define

1 y€eH,NH
Ta([x1, %], y) = SR
—1 otherwise

where
H, = {z € R? | (z,x) > 0}.

There is ¢4 such that for every finite X and ),

I‘ki (Id) < Cd?

Open for d > 4.

20/33



Problem Il: Large Margin = Low
Sign-rank?
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Problem ([Linial, Mendelson, Schechtman, Shraibman’07])

Does “large margin” imply bounded sign-rank:

m(A) = Q(1) = rky (A) = O(1)?
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Equivalent formulations of LMSS:

m(A), Disc(A) = Q(1) rki (A) = O(1) 7
R(A); [[Allro.e = O(1) UPP(A) = O(1)
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Let Qy: {0,1}9 x {0,1}¢ — {—1,1} be the (sign) adjacency
matrix of the d-dimensional hypercube:

Qa(x,y) = -l [x—yl1 =1

Is it true
lim I‘ki(Qd) = o0?
d—oo
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Let Qy: {0,1}9 x {0,1}¢ — {—1,1} be the (sign) adjacency
matrix of the d-dimensional hypercube:

Qa(x,y) = -l [x—yl1 =1

Is it true
lim I‘ki(Qd) = o0?
d—oo

e We know

R(Qq) = O(1).

e If the above Conj is true, then

m(A) = Q(1) > rki(A) = O(1).
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Summary

Is it true that
rki(Id) < cq?

Let Qg be the (sign) adjacency matrix of the d-dimensional
hypercube. We have

lim rki(Qd) =007’
d—o0

Beyond the reach of discussed lower bound techniques!
We have rect(Zy4) = O(1) and rect(Qq) = O(1).

v
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A separation of Margin vs Sign-rank for partial
functions (Joint work with Kaave and Xiang)
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The statement for Partial Functions

Are there partial matrices A with

e m(A) = Q(1) but rky (A) = w(1)?

e R(A) = O(1) but UPP(A) = w(1)?
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The statement for Partial Functions

Are there partial matrices A with
e m(A) = Q(1) but rky (A) = w(1)?

e R(A) = O(1) but UPP(A) = w(1)?

e Not known for total functions (hypercube is a candidate).
e Partial functions: Canonical candidate

f:S97lxsdl 5 [—1,1,%)

1 (xy)>e¢
f,y)=q9-1 (x,y)<—c.
* otherwise
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f:S97lxs97l 5 [—1,1,%)

1 (x,y) > €
f,y) =S -1 (x,y) < —e-

* otherwise

Theorem (HH,Hosseini,Meng'22++)
For e < 1, every completion of f has sign-rank at least d. J

e Sharpness: g(x,y) :=sgn(x,y) has sign-rank d.
e Note R(f) = O(1) and UPP(f) = log,(d) £ O(1).
e The proof is short but uses Borsuk-Ulam: Every continuous

¢ : S971 — R satisfies ¢(x) = ¢(—x) for some x.
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A related problem

f:S97 1w s97l 5 [—1,1,%)

1 (x,y) > €
fx,y)=9-1 (x,y) < —¢.

* otherwise

Every completion of f to a total function have VC dimension
> cg with limg_,s cg = 0.
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Discretization: Large-Gap-Hamming Distance

G:{0,1}9 x {0,1}9 = {-1,1,%}

1 (x,y)>de
G(x,y) =91 (x,y) < —de.

* otherwise

Theorem (HH,Hosseini,Meng'22)
Sign-rank of G is Q(d/log? d).
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Discretization: Large-Gap-Hamming Distance

G:{0,1}9 x {0,1}9 = {-1,1,%}

1 (x,y)>de

G(x,y)=4-1 (x,y) <—de.
* otherwise
Theorem (HH,Hosseini,Meng'22)
Sign-rank of G is Q(d/ log? d). J

e The (public-coin) randomized CC of G is O(1).

e The unbounded-error randomized CC of G is Q(log(d))
(Sharp by Newman's lemma).
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Conclusion: More Open Problems
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Open Problems

e Recall the conjecture (hypercubes):

m(A) = Q(1), [|Ally.c = O(1) #= rki(A) = O(1).

e What about with the stronger assumption ||A||,, = O(1)?

1All;, = O(1) <= D¥(A) = O(1).

Theorem ([HH,Hatami,Pires, Tao,Zhao'22])
We have
rky (A) < 4P"0(A),
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Open Problems

1All;, = O(1) <= D¥(A) = O(1).

Theorem ([Hambardzumyan,HH,Hatami'21])

The above conjecture is true for XOR-functions.
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Open Problems

1All;, = O(1) <= D¥(A) = O(1).

Theorem ([Hambardzumyan,HH,Hatami'21])

The above conjecture is true for XOR-functions.

e The proof uses Green and Sanders’ quantitative version of
Cohen's idempotent theorem. If the conj is true, then it
characterizes idempotents of the algebra of Schur
multipliers.
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Thank You For Your Attention!
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