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. consider non-compact graphs

2. take general coefficients c(s)

3. consider operators on LP-spaces,
p € [1,00)
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. treat general boundary conditions

5. obtain necessary and sufficient
conditions for well-posedness
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Main idea: Boundary Perturbations

Abstract formulation

(ACP) {Xm “MO o x = 1R € < (0,11, €7)

A = (CU(')as)ij
D(A) = {fe W"P(Ry,CY x WHP([0,1],C™) | of =0}

and ®: X — 9X c C™** is boundary operator
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Boundary perturbations of domains of generators

[§ Greiner (1987), Weiss (1994), Staffans (2005),
Adler-Bombieri-Engel (2014), Hadd-Manzo-Rhandi (2015)

X and 90X two Banach spaces

Am: D(Am) € X — X a closed, densely defined maximal
operator

boundary operator ® =L — C: X — 0X
Ao, A C Apy with D(Ag) = ker(L), D(A) = ker(®)
Ao generates a Co-semigroup (T(t));>o on X

Problem

Find conditions on ® so that A generates a Cy-semigroup on X.
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Special case: Boundary matrices

Assumptions

e coefficients ¢jj(s) are bounded functions

o) = (qeé') q,-((’,)) ' (Aeé') A"(()-)) ' (qeé.) q"(()-))_l

e )¢, \ are diagonal whose diagonal entries are functions with

strictly constant sign

e ¢ is bounded, Lipschitz continuous with bounded inverse

Boundary space

Denote by P¢, P¢ € My(C) and P, P" € M,(C) the spectral
projections corresponding to positive/negative values of \¢, N
respectively. Then 90X = rg(P¢) x C™ = C" C CH*m.



Special case: Boundary matrices

Theorem
Let & := (Voeéo, V{do — Vliél) — B for some V§ € Mpy(C),
V{, Vi € Mpxm(C), and B € L(X,0X). Then A generates a
Co-semigroup on X if and only if

(V5a°(0), Vig'(1)PL — Vgq'(0)PL) € L£(0X)

is invertible.



Special case: Boundary matrices

For compact graph and diagonal velocities we obtain

Corollary

Let X = LP([0,1],C™) and ® := Vg — V4161 — B for some
Vo, Vi € M;»(C) and B € L£(X,C™). Then A generates a
Co-semigroup on X if and only if

det(V1P+ = VoP_) == (0
Moreover, it generates Co-group if and only if in addition

det(le_ = VOP+> 75 0.
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Compact graph

e Assume diagonal velocities and A(s) < 0.

e Standard boundary conditions:

of = Wf(0) — Vif(1) =0
e A s generator <= Vj invertible.
o Vof(0) = Vif(1) < f(0) = V5 'V4f(1)
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Non-compact graph

e Assume diagonal velocities and \/(«) < 0.

e Standard boundary conditions:
. (£(0) .
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( 0> 0)<f’(0)> 1 ()
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Standard boundary conditions

Non-compact graph

e Assume diagonal velocities and \/(«) < 0.

e Standard boundary conditions:

(%) (o)) = YiF @

e A is generator <= (Voe, Vé) has full rank.

o (V§, V{) is Moore-Penrose invertible and boundary conditions
can be equivalently written as

(5)) = (v v vir

11
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€1

i

€3

ACAE) g Aale) Aa(e), As(s) < 0

e Standard conditions:

ut(0) = aus(1)
w0) = 1-a)u(l) <= Vo=, \/1:(

U3(0) = U1(1)+U2(1)
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Compact graph, diagonal velocities
€1

i

€3

ACAE) g Aale) Aa(e), As(s) < 0

e Standard conditions:

U2(0) = (1 — Oé)U3(1) — W=I V=
U3(0) = Ul(].) + U2(1)

u1(0) = aus(l)
(

0 «
001—«
1 0

[ ele]

e A generates a Cy-semigroup but not a group
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Non-compact graph, diagonal velocities
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Non-compact graph, diagonal velocities

i
€

ACAE)L, Ni(+), Aj(+) <0, AS(+) > 0, AS(+) < O

i 0 f 0p A0
vi-(33). vi-(30). w-(%)

e Ais generator < adyu # 0.
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Compact graph, non-diagonal velocities

€1

o »

€2

s s

A C c(s)Z with g(s) = (325°,1)

Recall: A is generator <= V1q(1)P;+ — Voq(0)P— invertible.

If A1(e), A2(s) both positive/negative, invertibility of V;/V;
yields Cp-semigroup.

If A1(s) > 0> Az(e) and Vo = V4 = Id, this matrix is singular!

However, if g(+) = Id, we obtain the generation of a Cy-group.
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General non-local boundary conditons

O0———0

X =LrP[0,1], 0X =C, AC &, & =5, — B where

! 1 1
Bf = / h(s)f(s) ds for some h € LI[0, 1], 5 + i 1.
0

e A generates a Cy-semigroup but not a group on LP[0, 1].

ii5)
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